編寫教案的過程是教師不斷學習和成長的過程,它可以幫助教師提高專業素養和教學能力。怎樣才能寫好下載高中數學教案模板?這里給大家提供下載高中數學教案模板,方便大家學習。
各位老師:
大家好!
我叫______,來自____。我說課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節,課時安排為兩個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質,又是以后學習條件概率的基礎,起到承前啟后的作用。
2.教學的重點和難點
重點:理解古典概型及其概率計算公式。
難點:古典概型的判斷及把一些實際問題轉化成古典概型。
二、教學目標分析
1.知識與技能目標
(1)通過試驗理解基本事件的概念和特點
(2)在數學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。
2、過程與方法:
經歷公式的推導過程,體驗由特殊到一般的數學思想方法。
3、情感態度與價值觀:
(1)用具有現實意義的實例,激發學生的學習興趣,培養學生勇于探索,善于發現的創新思想。
(2)讓學生掌握"理論來源于實踐,并把理論應用于實踐"的辨證思想。
三、教法與學法分析
1、教法分析:根據本節課的特點,采用引導發現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。
2、學法分析:學生在教師創設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態度。
㈠創設情景、引入新課
在課前,教師布置任務,以小組為單位,完成下面兩個模擬試驗:
試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由代表匯總;
試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由代表匯總。
在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出兩個問題。
1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。
2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?]
「設計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養學生運用數學語言的能力。隨著新問題的提出,激發了學生的求知欲望,通過觀察對比,培養了學生發現問題的能力。
㈡思考交流、形成概念
學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深對新概念的理解。
[基本事件有如下的兩個特點:
(1)任何兩個基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統一面,這能培養學生分析問題的能力,同時也教會學生運用對立統一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關鍵。
例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?
先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優點。
「設計意圖」將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點
觀察對比,發現兩個模擬試驗和例1的共同特點:
讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。
[經概括總結后得到:
(1)試驗中所有可能出現的基本事件只有有限個;(有限性)
(2)每個基本事件出現的可能性相等。(等可能性)
我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。
「設計意圖」培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。
㈢觀察分析、推導方程
問題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?
教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發現其中的聯系,最后概括總結得出古典概型計算任何事件的概率計算公式:
「設計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。
提問:
(1)在例1的實驗中,出現字母"d"的概率是多少?
(2)在使用古典概型的概率公式時,應該注意什么?
「設計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。
㈣例題分析、推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。
「設計意圖」讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。鞏固學生對已學知識的掌握。
例3同時擲兩個骰子,計算:
(1)一共有多少種不同的結果?
(2)其中向上的點數之和是5的結果有多少種?
(3)向上的點數之和是5的概率是多少?
先給出問題,再讓學生完成,然后引導學生分析問題,發現解答中存在的問題。引導學生用列表來列舉試驗中的基本事件的總數。
「設計意圖」利用列表數形結合和分類討論,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態度。
㈤探究思想、鞏固深化
問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現什么情況?你能解釋其中的原因嗎?
要求學生觀察對比兩種結果,找出問題產生的原因。
「設計意圖」通過觀察對比,發現兩種結果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸養成自主探究能力。
㈥總結概括、加深理解
1.基本事件的特點
2.古典概型的特點
3.古典概型的概率計算公式
學生小結歸納,不足的地方老師補充說明。
「設計意圖」使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。
㈦布置作業
課本練習1、2、3
「設計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節課的理解。
教學目標:
1、使學生通過觀察、操作、實驗等活動,找出簡單事物的排列組合規律。
2、培養學生初步的觀察、分析和推理能力以及有順序地、全面地思考問題的意識。
3、使學生感受數學在現實生活中的廣泛應用,嘗試用數學的方法來解決實際生活中的問題。使學生在數學活動中養成與人合作的良好習慣。
教學過程:
一、創設增境,激發興趣。
師:今天我們要去"數學廣角樂園"游玩,你們想去嗎?
二、操作探究,學習新知。
<一>組合問題
l、看一看,說一說
師:那我們先在家里挑選穿上漂亮的衣服吧。(課件出示主題圖)
師引導思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學生說一說)
2、想一想,擺一擺
(l)引導討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復呢?
①學生小組討論交流,老師參與小組討論。
②學生匯報
(2)引導操作:小組同學互相合作,把你們設計的穿法有序的貼在展示板上。(要求:小組長拿出學具衣服圖片、展示板)
①學生小組合作操作擺,教師巡視參與小組活動。
②學生展示作品,介紹搭配方案。
③生生互相評價。
(3)師引導觀察:
第一種方案(按上裝搭配下裝)有幾種穿法?(4種)
第二種方案(按下裝搭配上裝)有幾種穿法?(4種)
師小結:不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復、不遺漏的把所有的方法找出來。在今后的學習和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。
<二>排列問題
師:數學廣角樂園到了,不過進門之前我們必須找到開門密碼。(課件出示課件密碼門)
密碼是由1、2、3組成的兩位數.
(1)小組討論擺出不同的兩位數,并記下結果。
(2)學生匯報交流(老師根據學生的回答,點擊課件展示密碼)
(3)生生相互評價。方法一:每次拿出兩張數字卡片能擺出不同的兩位數;
方法二:固定十位上的數字,交換個位數字得到不同的兩位數;
方法三:固定個位上的數字,交換十位數字得到不同的兩位數.
師小結:三種方法雖然不同,但都能正確并有序地擺出6個不同的兩位數,同學們可以用自己喜歡的方法.
三、課堂實踐,鞏固新知。
1、乒乓球賽場次安排。
師:我們先去活動樂園看看,這兒正好有乒乓球比賽呢.(課件出示情境圖)
(l)老師提出要求:每兩個運動員之間打一場球賽,一共要比幾場?
(2)學生獨立思考.
(3)指名學生匯報.規
2、路線選擇。(課件展示游玩景點圖)
師:我們去公園看看吧。途中要經過游戲樂園。
(l)師引導觀察:從活動樂園到游戲樂園有幾條路線?哪幾條?(甲,乙兩條)從游戲樂園去公園有幾條路線?哪幾條?(A,B,C三條)(根據學生的回答課件展示)
從活動樂園到時公園到底有幾種不同的走法?
(2)學生獨立思索后小組交流。
(3)全班同學互相交流。
3、照像活動。
師:我們來到公園,這兒的景色真不錯,大家照幾張像吧.
師提出要求:攝影師要求三名同學站成一排照像,每小組根據每次合影人數(雙人照或三人照)設計排列方案,由組長作好活動記錄。
(1)小組活動,老師參與小組活動。
(2)各小組展示記錄方案。
(3)師生共同評價。
4、欣賞照片.
師:在同學們照像的同時,小麗一家三口人也正在照像呢,看看她們是怎樣照的.(課件展示照片集欣賞)
四、總結
今天的游玩到此結束,同學們互相握手告別好嗎?如果小組里的四個同學每兩人握一次手,一共要握幾次手?
教學目標:
1·進一步理解對數函數的性質,能運用對數函數的相關性質解決對數型函數的常見問題·
2·培養學生數形結合的思想,以及分析推理的能力·
教學重點:
對數函數性質的應用·
教學難點:
對數函數的性質向對數型函數的演變延伸·
教學過程:
一、問題情境
1·復習對數函數的性質·
2·回答下列問題·
(1)函數y=log2x的值域是;
(2)函數y=log2x(x≥1)的值域是;
(3)函數y=log2x(0
3·情境問題·
函數y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學生活動
探究完成情境問題·
三、數學運用
例1求函數y=log2(x2+2x+2)的定義域和值域·
練習:
(1)已知函數y=log2x的值域是[—2,3],則x的范圍是________________·
(2)函數,x(0,8]的值域是·
(3)函數y=log(x2—6x+17)的值域·
(4)函數的.值域是_______________·
例2判斷下列函數的奇偶性:
(1)f(x)=lg(2)f(x)=ln(—x)
例3已知loga0·75>1,試求實數a取值范圍·
例4已知函數y=loga(1—ax)(a>0,a≠1)·
(1)求函數的定義域與值域;
(2)求函數的單調區間·
練習:
1·下列函數(1)y=x—1;(2)y=log2(x—1);(3)y=;(4)y=lnx,其中值域為R的有(請寫出所有正確結論的序號)·
2·函數y=lg(—1)的圖象關于對稱·
3·已知函數(a>0,a≠1)的圖象關于原點對稱,那么實數m=·
4·求函數,其中x[,9]的值域·
四、要點歸納與方法小結
(1)借助于對數函數的性質研究對數型函數的定義域與值域;
(2)換元法;
(3)能畫出較復雜函數的圖象,根據圖象研究函數的性質(數形結合)·
五、作業
課本P70~71—4,5,10,11·
本人作為一名英語教師,從英語學科學習的角度出發,來談一談怎樣上好英語的開學第一課。我把這次課程的主題確立為:初中英語究竟應該學什么?怎樣學習更有效?這次課程主要針對的對象是初一新生,希望對他們今后的英語學習起到很好的指導作用。
與小學英語的學習相比較,初中英語的內容要復雜的多,在剛剛進入初一學習的時候,隨著難度的突然增加,會有很多同學感到不適應,甚至有一大部分小學英語基礎還不錯的學生到初一下學期就掉隊了,考試成績變得一塌糊涂。為什么會導致這樣的現象發生呢?究其原因,一個很關鍵的因素就是:學習方法不當。上小學時,學生的學習對老師的依賴性特別強,老師教什么,學生學什么,老師留什么,學生做什么。這是一種典型的被動式學習,等上了初中就會更被動了。良好的開端是成功的一半,作為教師,我們應該從初一開始就幫助學生盡快轉變學習方式,變被動學習為主動學習。所謂的主動學習,實際上是指一種自主探究式的學習,這種學習要遵循的原則是:透過現象把握本質,構建知識的網絡體系,利用規律來解決問題。下面我們來用這種自主探究式的學習方法對初中英語學習進行簡單剖析。
一.初中英語究竟應該學什么?
這就要抓住本質的東西,也就是初中英語的靈魂,剖析開來,無非是三個方面:詞匯、時態、從句。不僅初中英語學習的本質于此,高中英語也不例外。詞匯、時態、從句這三個方面是我們初中英語學習要遵循的主要方向。本質的東西明確了,接下來就是要如何將詞匯、時態、從句三者有機地結合起來,提高初中英語學習的效率才是終極目標,關鍵就在于理順三者之間的關系,深入本質,使之渾然一體。
時態好比人的骨骼,詞匯似血肉,詞匯依附在時態的架構上,從此可以看出,時態是最基礎的東西,首先掌握時態的應用是非常必要的,英語語言不同漢語的最大特點就是所使用的動詞往往隨著時間及人稱的變化而變化,在英語的聽、說、讀、寫等方面,都應該時刻注意時態的正確使用,尤其對初學英語者更應該特別注意,但這一點卻被大多數中國英語學習者在口語交流中所忽視,導致讓母語為英語的人士聽了很不舒服。對初中生來說,應該掌握的有8種基本時態,從教學實踐看,學會這8種時態也不會花費太多的時間,可以說,提前掌握時態的應用將會在英語學習上達到事半功倍的效果。再說從句,初中英語要掌握5種從句:賓語從句、定語從句、狀語從句、主語從句、表語從句。從句就像人體的經絡,從句的樞紐為連接詞,連接詞來引導從句,我把它們看成人體的穴位,學習英語要學會“點穴”。由以上的比喻我們不難看出:詞匯、時態、從句是初中英語的一個密切聯系的有機整體,是自然的渾然一體。
通過把握初中英語學習的本質,讓我們抓住了英語學習的靈魂,明確了初中英語究竟要學什么,讓我們在面對初中英語學習時不再迷惑,不再恐懼,不再彷徨。
二.初中英語怎樣學習才更有效呢?
1.構建知識的網絡體系.
對于初中的語法知識,我們應該學會總結,注意知識點之間的橫向和縱向聯系并進行比較,這樣所學知識就會網絡化,記憶牢固,輸出靈活。以學習過去進行時為例,要掌握它的基本概念(重在理解)、基本構成、應用范圍(常見題型)、過去進行時與一般過去時的比較,這樣學習所獲得的知識才是系統的、實用的。
2.利用規律來解決問題.
談到利用規律解決問題,這是知識的輸出利用過程,數學中有很多的公式定理可循,初中英語有哪些規律可循呢?其實,我們認真的體驗的話,初中英語中所涉及到的時態、從句,都是英語語言應遵循的規律,我們必須學會利用它們。以做初中英語考試閱讀理解題目為例,我們就可以實現利用規律解決問題,在做閱讀理解題時做到胸有成竹,百戰不殆。仔細分析一下一篇文章由什么組成,詞組成句,句形成段,段擴展成篇。透過文章表面挖掘本質:詞匯---血肉,時態----骨骼,從句-----經絡。在平時我們應事先準備好這些規律性的東西----時態和從句,在考試閱讀時,我們就能很快地把時態和從句辨認出來,加之詞匯的基礎,文章很快就會讀懂了。從這一點看,我們在平時的閱讀理解訓練時,除了要注重技巧外,更需注重基礎,學會掌握規律并利用規律解決問題。
3.充分發揮聯想,學會相互聯系
單詞是聽、說、讀、寫的基石,初中三年需要掌握的基礎詞匯有1600個,長期以來,單詞記不住成為困擾廣大初中生英語學習的一大難題,很多同學因詞匯掌握不好而影響了英語學習興趣,乃至考試成績。究其原因,在于三個方面:1)方法不當。
2)目標不夠明確。3)不夠堅持。主要原因還是在于要有恰當的方法.下面給大家介紹一種實用有效的聯想法記單詞,聯想法記單詞的關鍵是相互聯系。
1)從讀音角度記單詞,快速記住單詞的讀音和詞義,前提是要會正確讀音。
.shark鯊魚
讀音聯想為殺客
記憶處理:鯊魚殺死了客人。
.fence籬笆
讀音聯想為粉絲
記憶處理:粉絲曬在籬笆上。
.move移動
讀音聯想為木屋
記憶處理:木屋是可以移動的。
2)從拼寫角度記單詞,快速記住單詞的拼寫和詞義。
.spice香料=s蛇+p皮+ice冰
處理:蛇皮加冰做成了香料。
.tablet寫字板=table桌子+t傘
處理:桌子旁邊加把傘當寫字板。
.glass玻璃gloss光澤o洞
處理:玻璃中間打了個洞,光澤就失去了。
.dogday三伏天=dog狗+day天
處理:狗都受不了的天是三伏天。
通過今天的開學第一課,同學們從整體上對初中英語學習有了一定的宏觀把握,希望大家能夠盡快地變被動學習為主動,以更快、更高效的速度融入到初中英語學習中來。
人教版高中數學必修5教案
(一)課標要求
本章的中心內容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應用上。通過本章學習,學生應當達到以下學習目標:
(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的生活實際問題。
(二)編寫意圖與特色
1.數學思想方法的重要性
數學思想方法的教學是中學數學教學中的重要組成部分,有利于學生加深數學知識的理解和掌握。
本章重視與內容密切相關的數學思想方法的教學,并且在提出問題、思考解決問題的策略等方面對學生進行具體示范、引導。本章的兩個主要數學結論是正弦定理和余弦定理,它們都是關于三角形的邊角關系的結論。在初中,學生已經學習了相關邊角關系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應邊及其所夾的角相等,那么這兩個三角形全”等。
教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發,提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題。”設置這些問題,都是為了加強數學思想方法的教學。
2.注意加強前后知識的聯系
加強與前后各章教學內容的聯系,注意復習和應用已學內容,并為后續章節教學內容做好準備,能使整套教科書成為一個有機整體,提高教學效益,并有利于學生對于數學知識的學習和鞏固。
本章內容處理三角形中的邊角關系,與初中學習的三角形的邊與角的基本關系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯系。教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發,提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的`問題。”這樣,從聯系的觀點,從新的角度看過去的問題,使學生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎上,形成良好的知識結構。
《課程標準》和教科書把“解三角形”這部分內容安排在數學五的第一部分內容,
位置相對靠后,在此內容之前學生已經學習了三角函數、平面向量、直線和圓的方程等與本章知識聯系密切的內容,這使這部分內容的處理有了比較多的工具,某些內容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關系,余弦定理則指出了一般三角形中三邊平方之間的關系,如何看這兩個定理之間的關系?”,并進而指出,“從余弦定理以及余弦函數的性質可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
3.重視加強意識和數學實踐能力
學數學的最終目的是應用數學,而如今比較突出的兩個問題是,學生應用數學的意識不強,創造能力較弱。學生往往不能把實際問題抽象成數學問題,不能把所學的數學知識應用到實際問題中去,對所學數學知識的實際背景了解不多,雖然學生機械地模仿一些常見數學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發現問題、解決問題的科學思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發,引入數學課題,最后把數學知識應用于實際問題。
一、教學目標
1.知識與能力目標
①使學生理解數列極限的概念和描述性定義。
②使學生會判斷一些簡單數列的極限,了解數列極限的“e-N"定義,能利用逐步分析的方法證明一些數列的極限。
③通過觀察運動和變化的過程,歸納總結數列與其極限的特定關系,提高學生的數學概括能力和抽象思維能力。
2.過程與方法目標
培養學生的極限的思想方法和獨立學習的能力。
3.情感、態度、價值觀目標
使學生初步認識有限與無限、近似與精確、量變與質變的辯證關系,培養學生的辯證唯物主義觀點。
二、教學重點和難點
教學重點:數列極限的概念和定義。
教學難點:數列極限的“ε―N”定義的理解。
三、教學對象分析
這節課是數列極限的第一節課,足學生學習極限的入門課,對于學生來說是一個全新的內容,學生的思維正處于由經驗型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內容求球的表面積和體積時對極限思想已有接觸,而學生在以往的數學學習中主要接觸的是關于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導他們作出描述性定義“當n無限增大時,數列{an}中的項an無限趨近于常數A,也就是an與A的差的絕對值無限趨近于0”,并能用這個定義判斷一些簡單數列的極限。但要使他們在一節課內掌握“ε-N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個例子,歸納研究一些簡單的數列的極限。使學生理解極限的基本概念,認識什么叫做數列的極限以及數列極限的定義即可。
四、教學策略及教法設計
本課是采用啟發式講授教學法,通過多媒體課件演示及學生討論的方法進行教學。通過學生比較熟悉的一個實際問題入手,引起學生的注意,激發學生的學習興趣。然后通過具體的兩個比較簡單的數列,運用多媒體課件演示向學生展示了數列中的各項隨著項數的增大,無限地趨向于某個常數的過程,讓學生在觀察的基礎上討論總結出這兩個數列的特征,從而得出數列極限的一個描述性定義。再在教師的引導下分析數列極限的各種不同情況。從而對數列極限有了直觀上的認識,接著讓學生根據數列中各項的情況判斷一些簡單的數列的極限。從而達到深化定義的效果。最后進行練習鞏固,通過這樣的一個完整的教學過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學生逐步地了解極限這個新的概念,為下節課的極限的運算及應用做準備,為以后學習高等數學知識打下基礎。在整個教學過程中注意突出重點,突破難點,達到教學目標的要求。
五、教學過程
1.創設情境
課件展示創設情境動畫。
今天我們將要學習一個很重要的新的知識。
情境
1、我國古代數學家劉徽于公元263年創立“割圓術”,“割之彌細,所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。
情境
2、我國古代哲學家莊周所著的《莊子?天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之???如此下去,無限次地切,每次都切一半,問是否會切完?
大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠不會變成零。從而引出極限的概念。
2.定義探究
展示定義探索(一)動畫演示。
問題1:請觀察以下無窮數列,當n無限增大時,a,I的變化趨勢有什么特點?
(1)1/2,2/3,3/4,?n/n-1(2)0.9,0.99,0.999,0.9999,1-1/10n??
問題2:觀察課件演示,請分析以上兩個數列隨項數n的增大項有那些特點?
師生一起歸納總結出以下結論:數列(1)項數n無限增大時,項無限趨近于1;數列(2)項數n無限增大時,項無限趨近于1。
那么就把1叫數列(1)的極限,1叫數列(2)的極限。這兩個數列只是形式不同,它們都是隨項數n的無限增大,項無限趨近于某一確定常數,這個常數叫做這個數列的極限。
那么,什么叫數列的極限呢?對于無窮數列an,如果當n無限增大時,an無限趨向于某一個常數A,則稱A是數列an的極限。
提出問題3:怎樣用數學語言來定量描述呢?怎樣用數學語言來描述上述數列的變化趨勢?
展示定義探索(二)動畫演示,師生共同總結發現在數軸上兩點間距離越小,項與1越趨近,因此可以借助兩點間距離無限小的方式來描述項無限趨近常數。無論預先指定多么小的正數e,如取e=O-1,總能在數列中找到一項am,使得an項后面的所有項與1的差的絕對值都小于ε,若取£=0。0001,則第6項后面的所有項與1的差的絕對值都小于ε,即1是數列(1)的極限。最后,師生共同總結出數列的極限定義中應包含哪量(用這些量來描述數列1的極限)。
數列的極限為:對于任意的ε>0,如果總存在自然數N,當n>N時,不等式|an-A|n的極限。
定義探索動畫(一):
課件可以實現任意輸入一個n值,可以計算出相應的數列第n項的值,并且動畫演示數列的變化過程。如圖1所示是課件運行時的一個畫面。
定義探索動畫(二)課件可以實現任意輸入一個n值,可以計算出相應的數列第n項的值和Ian一1I的值,并且動畫演示出第an項和1之間的距離。如圖2所示是課件運行時的一個畫面。
3.知識應用
這里舉了3道例題,與學生一塊思考,一起分析作答。
例1.已知數列:
1,-1/2,1/3,-1/4,1/5??,(-1)n+11/n,??
(1)計算an-0(2)第幾項后面的所有項與0的差的絕對值都小于0.017都小于任意指定的正數。
(3)確定這個數列的極限。
例2.已知數列:
已知數列:3/2,9/4,15/8??,2+(-1/2)n,??。
猜測這個數列有無極限,如果有,應該是什么數?并求出從第幾項開始,各項與這個極限的差都小于0.1,從第幾項開始,各項與這個極限的差都小于0.017
例3.求常數數列一7,一7,一7,一7,??的極限。
5.知識小結
這節課我們研究了數列極限的概念,對數列極限有了初步的認識。數列極限研究的是無限變化的趨勢,而通過對數列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質變之間的辯證關系在這里得到了充分的體現。
課后練習:
(1)判斷下列數列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。
(2)課本練習1,2。
6.探究性問題
設計研究性學習的思考題。
提出問題:
芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠也無法超過在他前面慢慢爬行的烏龜,因為當阿基里斯到達烏龜的起跑點時,烏龜已經走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當阿基里斯追到O.1公里的地方,烏龜又向前跑了0.01公里。當阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里??這樣一直追下去,阿基里斯能追上烏龜嗎?
這里是研究性學習內容,以學生感興趣的悖論作為課后作業,鞏固本節所學內容,進一步提高了學生學習數列的極限的興趣。同時也為學生創設了課下交流與討論的情境,逐步培養學生相互合作、交流和討論的習慣,使學生感受到了數學來源于生活,又服務于生活的實質,逐步養成用數學的知識去解決生活中遇到的實際問題的習慣。
教學目標
(1)使學生正確理解組合的意義,正確區分排列、組合問題;
(2)使學生掌握組合數的計算公式;
(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;
教學重點難點
重點是組合的定義、組合數及組合數的公式;
難點是解組合的應用題.
教學過程設計
(-)導入新課
(教師活動)提出下列思考問題,打出字幕.
[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
(學生活動)討論并回答.
答案提示:(1)排列;(2)組合.
[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數,屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關系,要求出不同的組數,屬于組合問題.這節課著重研究組合問題.
設計意圖:組合與排列所研究的問題幾乎是平行的.上面設計的問題目的是從排列知識中發現并提出新的問題.
(二)新課講授
[提出問題 創設情境]
(教師活動)指導學生帶著問題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說明一個組合是什么?
3.一個組合與一個排列有何區別?
(學生活動)閱讀回答.
(教師活動)對照課文,逐一評析.
設計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應新的環境.
【歸納概括 建立新知】
(教師活動)承接上述問題的回答,展示下面知識.
[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.
組合數:從 個不同元素中取出 個元素的所有組合的個數,稱之,用符號 表示,如從6個元素中取出2個元素的組合數為 .
[評述]區分一個排列與一個組合的關鍵是:該問題是否與順序有關,當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.
(學生活動)傾聽、思索、記錄.
(教師活動)提出思考問題.
[投影] 與 的關系如何?
(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數 ,可分為以下兩步:
第1步,先求出從這 個不同元素中取出 個元素的組合數為 ;
第2步,求每一個組合中 個元素的全排列數為 .根據分步計數原理,得到
[字幕]公式1:
公式2:
(學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.
設計意圖:本著以認識概念為起點,以問題為主線,以培養能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.
【例題示范 探求方法】
(教師活動)打出字幕,給出示范,指導訓練.
[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.
例2 計算:(1) ;(2) .
(學生活動)板演、示范.
(教師活動)講評并指出用兩種方法計算例2的第2小題.
[字幕]例3 已知 ,求 的所有值.
(學生活動)思考分析.
解 首先,根據組合的定義,有
①
其次,由原不等式轉化為
即
解得 ②
綜合①、②,得 ,即
[點評]這是組合數公式的應用,關鍵是公式的選擇.
設計意圖:例題教學循序漸進,讓學生鞏固知識,強化公式的應用,從而培養學生的綜合分析能力.
【反饋練習 學會應用】
(教師活動)給出練習,學生解答,教師點評.
[課堂練習]課本P99練習第2,5,6題.
[補充練習]
[字幕]1.計算:
2.已知 ,求 .
(學生活動)板演、解答.
設計意圖:課堂教學體現以學生為本,讓全體學生參與訓練,深刻揭示排列數公式的結構、特征及應用.
(三)小結
(師生活動)共同小結.
本節主要內容有
1.組合概念.
2.組合數計算的兩個公式.
(四)布置作業
1.課本作業:習題10 3第1(1)、(4),3題.
2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?
3.研究性題:
在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?
(五)課后點評
在學習了排列知識的基礎上,本節課引進了組合概念,并推導出組合數公式,同時調控進行訓練,從而培養學生分析問題、解決問題的能力.
1.如圖,已知直線L:的右焦點F,且交橢圓C于A、B兩點,點A、B在直線上的射影依次為點D、E。
(1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)(理)連接AE、BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標,并給予證明;否則說明理由。
(文)若為x軸上一點,求證:
2.如圖所示,已知圓定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足,點N的軌跡為曲線E。
(1)求曲線E的方程;
(2)若過定點F(0,2)的直線交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足的取值范圍。
3.設橢圓C:的左焦點為F,上頂點為A,過點A作垂直于AF的直線交橢圓C于另外一點P,交x軸正半軸于點Q,且
⑴求橢圓C的離心率;
⑵若過A、Q、F三點的圓恰好與直線
l:相切,求橢圓C的方程.
4.設橢圓的離心率為e=
(1)橢圓的左、右焦點分別為F1、F2、A是橢圓上的一點,且點A到此兩焦點的距離之和為4,求橢圓的方程.
(2)求b為何值時,過圓x2+y2=t2上一點M(2,)處的切線交橢圓于Q1、Q2兩點,而且OQ1OQ2.
5.已知曲線上任意一點P到兩個定點F1(-,0)和F2(,0)的距離之和為4.
(1)求曲線的方程;
(2)設過(0,-2)的直線與曲線交于C、D兩點,且為坐標原點),求直線的方程.
6.已知橢圓的左焦點為F,左、右頂點分別為A、C,上頂點為B.過F、B、C作⊙P,其中圓心P的坐標為(m,n).
(Ⅰ)當m+n0時,求橢圓離心率的范圍;
(Ⅱ)直線AB與⊙P能否相切?證明你的結論.
7.有如下結論:圓上一點處的切線方程為,類比也有結論:橢圓處的切線方程為,過橢圓C:的右準線l上任意一點M引橢圓C的兩條切線,切點為A、B.
(1)求證:直線AB恒過一定點;(2)當點M在的縱坐標為1時,求△ABM的面積
8.已知點P(4,4),圓C:與橢圓E:有一個公共點A(3,1),F1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;
(Ⅱ)設Q為橢圓E上的一個動點,求的取值范圍.
9.橢圓的對稱中心在坐標原點,一個頂點為,右焦點與點的距離為。
(1)求橢圓的方程;
(2)是否存在斜率的直線:,使直線與橢圓相交于不同的兩點滿足,若存在,求直線的傾斜角;若不存在,說明理由。
10.橢圓方程為的一個頂點為,離心率。
(1)求橢圓的方程;
(2)直線:與橢圓相交于不同的兩點滿足,求。
11.已知橢圓的左焦點為F,左右頂點分別為A,C上頂點為B,過F,B,C三點作,其中圓心P的坐標為.
(1)若橢圓的離心率,求的方程;
(2)若的圓心在直線上,求橢圓的方程.
12.已知直線與曲線交于不同的兩點,為坐標原點.
(Ⅰ)若,求證:曲線是一個圓;
(Ⅱ)若,當且時,求曲線的離心率的取值范圍.
13.設橢圓的左、右焦點分別為、,A是橢圓C上的一點,且,坐標原點O到直線的距離為.
(1)求橢圓C的方程;
(2)設Q是橢圓C上的一點,過Q的直線l交x軸于點,較y軸于點M,若,求直線l的方程.
14.已知拋物線的頂點在原點,焦點在y軸的負半軸上,過其上一點的切線方程為為常數).
(I)求拋物線方程;
(II)斜率為的直線PA與拋物線的另一交點為A,斜率為的直線PB與拋物線的另一交點為B(A、B兩點不同),且滿足,求證線段PM的中點在y軸上;
(III)在(II)的條件下,當時,若P的坐標為(1,-1),求PAB為鈍角時點A的縱坐標的取值范圍.
15.已知動點A、B分別在x軸、y軸上,且滿足AB=2,點P在線段AB上,且
設點P的軌跡方程為c。
(1)求點P的軌跡方程C;
(2)若t=2,點M、N是C上關于原點對稱的兩個動點(M、N不在坐標軸上),點Q
坐標為求△QMN的面積S的最大值。
16.設上的兩點,
已知,,若且橢圓的離心率短軸長為2,為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線AB過橢圓的焦點F(0,c),(c為半焦距),求直線AB的斜率k的值;
(Ⅲ)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由
17.如圖,F是橢圓(a0)的一個焦點,A,B是橢圓的兩個頂點,橢圓的離心率為.點C在x軸上,BCBF,B,C,F三點確定的圓M恰好與直線l1:相切.
(Ⅰ)求橢圓的方程:
(Ⅱ)過點A的直線l2與圓M交于PQ兩點,且,求直線l2的方程.
18.如圖,橢圓長軸端點為,為橢圓中心,為橢圓的右焦點,且.
(1)求橢圓的標準方程;
(2)記橢圓的上頂點為,直線交橢圓于兩點,問:是否存在直線,使點恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.
19.如圖,已知橢圓的中心在原點,焦點在軸上,離心率為,且經過點.直線交橢圓于兩不同的點.
20.設,點在軸上,點在軸上,且
(1)當點在軸上運動時,求點的軌跡的方程;
(2)設是曲線上的點,且成等差數列,當的垂直平分線與軸交于點時,求點坐標.
21.已知點是平面上一動點,且滿足
(1)求點的軌跡對應的方程;
(2)已知點在曲線上,過點作曲線的兩條弦和,且,判斷:直線是否過定點?試證明你的結論.
22.已知橢圓的中心在坐標原點,焦點在坐標軸上,且經過、、三點.
(1)求橢圓的方程:
(2)若點D為橢圓上不同于、的任意一點,,當內切圓的面積最大時。求內切圓圓心的坐標;
(3)若直線與橢圓交于、兩點,證明直線與直線的交點在直線上.
23.過直角坐標平面中的拋物線的焦點作一條傾斜角為的直線與拋物線相交于A,B兩點。
(1)用表示A,B之間的距離;
(2)證明:的大小是與無關的定值,
并求出這個值。
24.設分別是橢圓C:的左右焦點
(1)設橢圓C上的點到兩點距離之和等于4,寫出橢圓C的方程和焦點坐標
(2)設K是(1)中所得橢圓上的動點,求線段的中點B的軌跡方程
(3)設點P是橢圓C上的任意一點,過原點的直線L與橢圓相交于M,N兩點,當直線PM,PN的斜率都存在,并記為試探究的值是否與點P及直線L有關,并證明你的結論。
25.已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(I)求橢圓的方程;
(II)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;
(III)設與軸交于點,不同的兩點在上,且滿足求的取值范圍.
26.如圖所示,已知橢圓:,、為
其左、右焦點,為右頂點,為左準線,過的直線:與橢圓相交于、
兩點,且有:(為橢圓的半焦距)
(1)求橢圓的離心率的最小值;
(2)若,求實數的取值范圍;
(3)若,,
求證:、兩點的縱坐標之積為定值;
27.已知橢圓的左焦點為,左右頂點分別為,上頂點為,過三點作圓,其中圓心的坐標為
(1)當時,橢圓的離心率的取值范圍
(2)直線能否和圓相切?證明你的結論
28.已知點A(-1,0),B(1,-1)和拋物線.,O為坐標原點,過點A的動直線l交拋物線C于M、P,直線MB交拋物線C于另一點Q,如圖.
(I)證明:為定值;
(II)若△POM的面積為,求向量與的夾角;
(Ⅲ)證明直線PQ恒過一個定點.
29.已知橢圓C:上動點到定點,其中的距離的最小值為1.
(1)請確定M點的坐標
(2)試問是否存在經過M點的直線,使與橢圓C的兩個交點A、B滿足條件(O為原點),若存在,求出的方程,若不存在請說是理由。
30.已知橢圓,直線與橢圓相交于兩點.
(Ⅰ)若線段中點的橫坐標是,求直線的方程;
(Ⅱ)在軸上是否存在點,使的值與無關?若存在,求出的值;若不存在,請說明理由.
31.直線AB過拋物線的焦點F,并與其相交于A、B兩點。Q是線段AB的中點,M是拋物線的準線與y軸的交點.O是坐標原點.
(I)求的取值范圍;
(Ⅱ)過A、B兩點分剮作此撒物線的切線,兩切線相交于N點.求證:∥;
(Ⅲ)若P是不為1的正整數,當,△ABN的面積的取值范圍為時,求該拋物線的方程.
32.如圖,設拋物線()的準線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線在軸上方的一個交點為.
(Ⅰ)當時,求橢圓的方程及其右準線的方程;
(Ⅱ)在(Ⅰ)的條件下,直線經過橢圓的右焦點,與拋物線交于、,如果以線段為直徑作圓,試判斷點與圓的位置關系,并說明理由;
(Ⅲ)是否存在實數,使得的邊長是連續的自然數,若存在,求出這樣的實數;若不存在,請說明理由.
33.已知點和動點滿足:,且存在正常數,使得。
(1)求動點P的軌跡C的方程。
(2)設直線與曲線C相交于兩點E,F,且與y軸的交點為D。若求的值。
34.已知橢圓的右準線與軸相交于點,右焦點到上頂點的距離為,點是線段上的一個動點.
(I)求橢圓的方程;
(Ⅱ)是否存在過點且與軸不垂直的直線與橢圓交于、兩點,使得,并說明理由.
35.已知橢圓C:(.
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設過定點的直線與橢圓C交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率k的取值范圍;
(3)如圖,過原點任意作兩條互相垂直的直線與橢圓()相交于四點,設原點到四邊形一邊的距離為,試求時滿足的條件.
36.已知若過定點、以()為法向量的直線與過點以為法向量的直線相交于動點.
(1)求直線和的方程;
(2)求直線和的斜率之積的值,并證明必存在兩個定點使得恒為定值;
(3)在(2)的條件下,若是上的兩個動點,且,試問當取最小值時,向量與是否平行,并說明理由。
37.已知點,點(其中),直線、都是圓的切線.
(Ⅰ)若面積等于6,求過點的拋物線的方程;
(Ⅱ)若點在軸右邊,求面積的最小值.
38.我們知道,判斷直線與圓的位置關系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關系有類似的判別方法嗎?請同學們進行研究并完成下面問題。
(1)設F1、F2是橢圓的兩個焦點,點F1、F2到直線的距離分別為d1、d2,試求d1d2的值,并判斷直線L與橢圓M的位置關系。
(2)設F1、F2是橢圓的兩個焦點,點F1、F2到直線
(m、n不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1d2的值。
(3)試寫出一個能判斷直線與橢圓的位置關系的充要條件,并證明。
(4)將(3)中得出的結論類比到其它曲線,請同學們給出自己研究的有關結論(不必證明)。
39.已知點為拋物線的焦點,點是準線上的動點,直線交拋物線于兩點,若點的縱坐標為,點為準線與軸的交點.
(Ⅰ)求直線的方程;(Ⅱ)求的面積范圍;
(Ⅲ)設,,求證為定值.
40.已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(I)求橢圓的方程;
(II)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;
(III)設與軸交于點,不同的兩點在上,且滿足求的取值范圍.
41.已知以向量為方向向量的直線過點,拋物線:的頂點關于直線的對稱點在該拋物線的準線上.
(1)求拋物線的方程;
(2)設、是拋物線上的兩個動點,過作平行于軸的直線,直線與直線交于點,若(為坐標原點,、異于點),試求點的軌跡方程。
42.如圖,設拋物線()的準線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線在軸上方的一個交點為.
(Ⅰ)當時,求橢圓的方程及其右準線的方程;
(Ⅱ)在(Ⅰ)的條件下,直線經過橢圓的右焦點,
與拋物線交于、,如果以線段為直徑作圓,
試判斷點與圓的位置關系,并說明理由;
(Ⅲ)是否存在實數,使得的邊長是連續的自然數,若存在,求出這樣的實數;若不存在,請說明理由.
43.設橢圓的`一個頂點與拋物線的焦點重合,分別是橢圓的左、右焦點,且離心率且過橢圓右焦點的直線與橢圓C交于兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由.
(Ⅲ)若AB是橢圓C經過原點O的弦,MNAB,求證:為定值.
44.設是拋物線的焦點,過點M(-1,0)且以為方向向量的直線順次交拋物線于兩點。
(Ⅰ)當時,若與的夾角為,求拋物線的方程;
(Ⅱ)若點滿足,證明為定值,并求此時△的面積
45.已知點,點在軸上,點在軸的正半軸上,點在直線上,且滿足.
(Ⅰ)當點在軸上移動時,求點的軌跡的方程;
(Ⅱ)設、為軌跡上兩點,且0,,求實數,
使,且.
46.已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切。
(1)已知橢圓的離心率;
(2)若的最大值為49,求橢圓C的方程.
一、課程性質與任務
數學是研究空間形式和數量關系的科學,是科學和技術的基礎,是人類文化的重要組成部分。數學課程是中等職業學校學生必修的一門公共基礎課。本課程的任務是:使學生掌握必要的數學基礎知識,具備必需的相關技能與能力,為學習專業知識、掌握職業技能、繼續學習和終身發展奠定基礎。二、課程教學目標
1.在九年義務教育基礎上,使學生進一步學習并掌握職業崗位和生活中所必要的數學基礎知識。2.培養學生的計算技能、計算工具使用技能和數據處理技能,培養學生的觀察能力、空間想象能力、分析與解決問題能力和數學思維能力。
3.引導學生逐步養成良好的學習習慣、實踐意識、創新意識和實事求是的科學態度,提高學生就業能力與創業能力。三、教學內容結構
本課程的教學內容由基礎模塊、職業模塊和拓展模塊三個部分構成。
1.基礎模塊是各專業學生必修的基礎性內容和應達到的基本要求,教學時數為128學時。2.職業模塊是適應學生學習相關專業需要的限定選修內容,各學校根據實際情況進行選擇和安排教學,教學時數為32~64學時。
3.拓展模塊是滿足學生個性發展和繼續學習需要的任意選修內容,教學時數不做統一規定。四、教學內容與要求
(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)
了解:初步知道知識的含義及其簡單應用。
理解:懂得知識的概念和規律(定義、定理、法則等)以及與其他相關知識的聯系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養要求(分為三項技能與四項能力)
計算技能:根據法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數學工具軟件。數據處理技能:按要求對數據(數據表格)進行處理并提取有關信息。觀察能力:根據數據趨勢,數量關系或圖形、圖示,描述其規律。
空間想象能力:依據文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據條件畫出圖形。
分析與解決問題能力:能對工作和生活中的簡單數學相關問題,作出分析并運用適當的數學方法予以解決。
數學思維能力:依據所學的數學知識,運用類比、歸納、綜合等方法,對數學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
(二)教學內容與要求1.基礎模塊(128學時)第1單元集合(10學時)
第2單元不等式(8學時)
第3單元函數(12學時)
第4單元指數函數與對數函數(12學時)
第5單元三角函數(18學時)
第6單元數列(10學時)
第7單元平面向量(矢量)(10學時)
第8單元直線和圓的方程(18學時)
第9單元立體幾何(14學時)
第10單元概率與統計初步(16學時)
2.職業模塊
第1單元三角計算及其應用(16學時)
第2單元坐標變換與參數方程(12學時)
第3單元復數及其應用(10學時)
一、教材分析
1.教材所處的地位和作用
在學習了隨機事件、頻率、概率的意義和性質及用概率解決實際問題和古典概型的概念后,進一步體會用頻率估計概率思想。它是對古典概型問題的一種模擬,也是對古典概型知識的深化,同時它也是為了更廣泛、高效地解決一些實際問題、體現信息技術的優越性而新增的內容。
2.教學的重點和難點
重點:正確理解隨機數的概念,并能應用計算器或計算機產生隨機數。
難點:建立概率模型,應用計算器或計算機來模擬試驗的方法近似計算概率,解決一些較簡單的現實問題。
二、教學目標分析
1、知識與技能:
(1)了解隨機數的概念;
(2)利用計算機產生隨機數,并能直接統計出頻數與頻率。
2、過程與方法:
(1)通過對現實生活中具體的概率問題的探究,感知應用數學解決問題的方法,體會數學知識與現實世界的聯系,培養邏輯推理能力;
(2)通過模擬試驗,感知應用數字解決問題的方法,自覺養成動手、動腦的良好習慣
3、情感態度與價值觀:
通過數學與探究活動,體會理論來源于實踐并應用于實踐的辯證唯物主義觀點.
三、教學方法與手段分析
1、教學方法:本節課我主要采用啟發探究式的教學模式。
2、教學手段:利用多媒體技術優化課堂教學
四、教學過程分析
㈠創設情境、引入新課
情境1:假設你作為一名食品衛生工作人員,要對某超市內的80袋小包裝餅干中抽取10袋進行衛生達標檢驗,你打算如何操作?
預設學生回答:
⑴采用簡單隨機抽樣方法(抽簽法)
⑵采用簡單隨機抽樣方法(隨機數表法)
教師總結得出:隨機數就是在一定范圍內隨機產生的數,并且得到這個范圍內每一數的機會一樣。(引入課題)
「設計意圖」(1)回憶統計知識中利用隨機抽樣方法如抽簽法、隨機數表法等進行抽樣的步驟和特征;(2)從具體試驗中了解隨機數的含義。
情境2:在拋硬幣和擲骰子的試驗中,是用頻率估計概率。假如現在要作10000次試驗,你打算怎么辦?大家可能覺得這樣做試驗花費時間太多了,有沒有其他方法可以代替試驗呢?
「設計意圖」當需要隨機數的量很大時,用手工試驗產生隨機數速度太慢,從而說明利用現代信息技術的重要性,體現利用計算器或計算機產生隨機數的必要性。
㈡操作實踐、了解新知
教師:向學生介紹計算器的操作,讓他們了解隨機函數的原理。可事先編制幾個小問題,在課堂上帶著學生用計算器(科學計算器或圖形計算器)操作一遍,讓學生熟悉如何用計算器產生隨機數。
「設計意圖」通過操作熟悉計算器操作流程,在明白原理后,通過讓學生自己按照規則操作,熟悉計算器產生隨機數的操作流程,了解隨機數。
問題1:拋一枚質地均勻的硬幣出現正面向上的概率是50,你能設計一種利用計算器模擬擲硬幣的試驗來驗證這個結論嗎?
思考:隨著模擬次數的不同,結果是否有區別,為什么?
「設計意圖」⑴設計概率模型是解決概率問題的難點,也是能解決概率問題的關鍵,是數學建模的第一步。⑵拋硬幣是最熟悉、最簡單的問題,很自然會想到把正面向上、反面向上這兩個基本事件用兩個隨機數來代替。(題目讓學生通過熟悉50想到用隨機數0,1來模擬,為后面問題4每天下雨的概率為40的概率建模作第一次小鋪墊。)⑶熟悉利用計算器模擬試驗的操作流程,為解決后面例題模擬下雨作好鋪墊。
問題2:(1)剛才我們利用了計算器來產生隨機數,我們知道計算機有許多軟件有統計功能,你知道哪些軟件具有隨機函數這個功能?
(2)你會利用統計軟件Excel來產生隨機數0,1嗎?你能設計一種利用計算機模擬擲硬幣的試驗嗎?
「設計意圖」⑴了解有許多統計軟件都有隨機函數這個功能,并與前面第一章所學的用程序語言編寫程序相聯系;⑵Excel是學生比較熟悉的統計軟件,也可讓學生回顧初中用Excel畫統計圖的一些功能和知識,其次讓學生掌握多種隨機模擬試驗方法。
問題3:(1)你能在Excel軟件中畫試驗次數從1到100次的頻率分布折線圖嗎?
(2)當試驗次數為1000,1500時,你能說說出現正面向上的頻率有些什么變化?
「設計意圖」⑴應用隨機模擬方法估計古典概型中隨機事件的概率值;
⑵體會頻率的隨機性與相對穩定性,經歷用計算機產生數據,整理數據,分析數據,畫統計圖的全過程,使學生相信統計結果的真實性、隨機性及規律性。
㈢講練結合、鞏固新知
問題4:天氣預報說,在今后的三天中,每一天下雨的概率均為40,這三天中恰有兩天下雨的概率是多少?
問1:能用古典概型的計算公式求解嗎?
你能說明一下這為什么不是古典概型嗎?
問2:你如何模擬每一天下雨的概率為40?
「設計意圖」⑴問題分層提出,降低本題難度。如何模擬每一天下雨的概率40是解決這道題的關鍵,是隨機模擬方法應用的重點,也是難點之一。
⑵鞏固用隨機模擬方法估計未知量的基本思想,明確利用隨機模擬方法也可解決不是古典概型而比較復雜的概率應用題。
歸納步驟:第一步,設計概率模型;
第二步,進行模擬試驗;
方法一:(隨機模擬方法--計算器模擬)利用計算器隨機函數;
方法二:(隨機模擬方法--計算機模擬)
第三步,統計試驗的結果。
課堂檢測將一枚質地均勻的硬幣連擲三次,出現"2個正面朝上、1個反面朝上"和"1個正面朝上、2個反面朝上"的概率各是多少?并用隨機模擬的方法做100次試驗,計算各自的頻數。
「設計意圖」通過練習,進一步鞏固學生對本節課知識的掌握。
㈣歸納小結
(1)你能歸納利用隨機模擬方法估計概率的步驟嗎?
(2)你能體會到隨機模擬的優勢嗎?請舉例說說。
「設計意圖」⑴通過問題的思考和解決,使學生理解模擬方法的優點,并充分利用信息技術的優勢;⑵是對知識的進一步理解與思考,又是對本節內容的回顧與總結。
㈤布置練習:
課本練習3、4
「設計意圖」課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。
[內容結束]
教學目標:
1、進一步熟練掌握比較法證明不等式;
2、了解作商比較法證明不等式;
3、提高學生解題時應變能力.
教學重點:
比較法的應用
教學難點:
常見解題技巧
教學方法啟發引導式
教學活動
(一)導入新課
(教師活動)教師打出字幕(復習提問),請三位同學回答問題,教師點評.
(學生活動)思考問題,回答.
[字幕]
1、比較法證明不等式的步驟是怎樣的?
2、比較法證明不等式的步驟中,依據、手段、目的各是什么?
3、用比較法證明不等式的步驟中,最關鍵的是哪一步?學了哪些常用的變形方法?對式子的變形還有其它方法嗎?
[點評]用比較法證明不等式步驟中,關鍵是對差式的變形.在我們所學的知識中,對式子變形的常用方法除了配方、通分,還有因式分解.這節課我們將繼續學習比較法證明不等式,積累對差式變形的常用方法和比較法思想的應用.(板書課題)
設計意圖:復習鞏固已學知識,銜接新知識,引入本節課學習的內容.
(二)新課講授
【嘗試探索,建立新知】
(教師活動)提出問題,引導學生研究解決問題,并點評.
(學生活動)嘗試解決問題.
[問題]
1、化簡
2、比較與()的大小.
(學生解答問題)
[點評]
①問題1,我們采用了因式分解的方法進行簡化.
②通過學習比較法證明不等式,我們不難發現,比較法的思想方法還可用來比較兩個式子的大小.
設計意圖:啟發學生研究問題,建立新知,形成新的知識體系.
【例題示范,學會應用】
(教師活動)教師打出字幕(例題),引導、啟發學生研究問題,井點評解題過程.
(學生活動)分析,研究問題.
[字幕]例題3已知a,b是正數,且,求證
[分析]依題目特點,作差后重新組項,采用因式分解來變形.
證明:(見課本)
[點評]因式分解也是對差式變形的一種常用方法.此例將差式變形為幾個因式的積的形式,在確定符號中,表達過程較復雜,如何書寫證明過程,例3給出了一個好的示范.
[點評]解這道題在判斷符號時用了分類討論,分類討論是重要的數學思想方法.要理解為什么分類,怎樣分類.分類時要不重不漏.
[字幕]例5甲、乙兩人同時同地沿同一條路線走到同一地點.甲有一半時間以速度m行走,另一半時間以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果,問甲、乙兩人誰先到達指定地點.
[分析]設從出發地點至指定地點的路程為,甲、乙兩人走完這段路程用的時間分別為,要回答題目中的問題,只要比較、的大小就可以了.
解:(見課本)
[點評]此題是一個實際問題,學習了如何利用比較法證明不等式的思想方法解決有關實際問題.要培養自己學數學,用數學的良好品質.
設計意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號的方法.培養學生應用知識解決實際問題的能力.
【課堂練習】
(教師活動)教師打出字幕練習,要求學生獨立思考,完成練習;請甲、乙兩位學生板演;巡視學生的解題情況,對正確的給予肯定,對偏差及時糾正;點評練習中存在的問題.
(學生活動)在筆記本上完成練習,甲、乙兩位同學板演.
[字幕]練習:
1、設,比較與的大小.
2、已知,求證
設計意圖:掌握比較法證明不等式及思想方法的應用.靈活掌握因式分解法對差式的變形和分類討論確定符號.反饋信息,調節課堂教學.
【分析歸納、小結解法】
(教師活動)分析歸納例題的解題過程,小結對差式變形、確定符號的常用方法和利用不等式解決實際問題的解題步驟.
(學生活動)與教師一道小結,并記錄在筆記本上.
1、比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個式子大小的一種重要方法.
2、對差式變形的常用方法有:配方法,通分法,因式分解法等.
3、會用分類討論的方法確定差式的符號.
4、利用不等式解決實際問題的解題步驟:
①類比列方程解應用題的步驟.
②分析題意,設未知數,找出數量關系(函數關系,相等關系或不等關系),
③列出函數關系、等式或不等式,
④求解,作答.
設計意圖:培養學生分析歸納問題的能力,掌握用比較法證明不等式的知識體系.
(三)小結
(教師活動)教師小結本節課所學的知識及數學思想與方法.
(學生活動)與教師一道小結,并記錄筆記.
本節課學習了對差式變形的一種常用方法因式分解法;對符號確定的分類討論法;應用比較法的思想解決實際問題.
通過學習比較法證明不等式,要明確比較法證明不等式的理論依據,理解轉化,使問題簡化是比較法證明不等式中所蘊含的重要數學思想,掌握求差后對差式變形以及判斷符號的重要方法,并在以后的學習中繼續積累方法,培養用數學知識解決實際問題的`能力.
設計意圖:培養學生對所學的知識進行概括歸納的能力,鞏固所學的知識,領會化歸、類比、分類討論的重要數學思想方法.
(四)布置作業
1、課本作業:P177、8。
2、思考題:已知,求證
3、研究性題:對于同樣的距離,船在流水中來回行駛一次的時間和船在靜水中來回行駛一次的時間是否相等?(假設船在流水中的速度和部在靜水中的速度保持不變)
設計意圖:思考題讓學生了解商值比較法,掌握分類討論的思想.研究性題是使學生理論聯系實際,用數學解決實際問題,提高應用數學的能力.
(五)課后點評
1、教學評價、反饋調節措施的構想:本節課采用啟發引導,講練結合的授課方式,發揮教師主導作用,體現學生主體地位,通過啟發誘導學生深入思考問題,解決問題,反饋學習信息,調節教學活動.
2、教學措施的設計:由于對差式變形,確定符號是掌握比較法證明不等式的關鍵,本節課在上節課的基礎上繼續學習差式變形的方法和符號的確定,例3和例4分別使學生掌握因式分解變形和分類討論確定符號,例5使學生對所學的知識會應用.例題設計目的在于突出重點,突破難點,學會應用
教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。
教學過程:
一、閱讀下列語句:
1)全體自然數0,1,2,3,4,5,
2)代數式
3)拋物線上所有的點
4)今年本校高一(1)(或(2))班的全體學生
5)本校實驗室的所有天平
6)本班級全體高個子同學
7)著名的科學家
上述每組語句所描述的對象是否是確定的?
二、
1)集合:
2)集合的元素:
3)集合按元素的個數分,可分為1)__________2)_________
三、集合中元素的三個性質:
1)___________2)___________3)_____________
四、元素與集合的關系:1)____________2)____________
五、特殊數集專用記號:
1)非負整數集(或自然數集)______2)正整數集_____3)整數集_______4)有理數集______5)實數集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是()
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?
1)地球上的四大洋構成的集合;
2)函數的全體值的集合;
3)函數的全體自變量的集合;
4)方程組解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數組成的集合;
8)所有正偶數組成的集合;
例3、用符號或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)設,,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數
2.圖中陰影部分點(含邊界)的坐標的集合
課堂練習:
例6、設含有三個實數的集合既可以表示為,也可以表示為,則的值等于___________
例7、已知:,若中元素至多只有一個,求的取值范圍。
思考題:數集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
小結:
作業班級姓名學號
1.下列集合中,表示同一個集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.則()
a.b.c.d.
3.方程組的解集是____________________。
4.在(1)難解的題目,(2)方程在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________。
5.設集合a=,b=,
c=,d=,e=。
其中有限集的個數是____________。
6.設,則集合中所有元素的和為
7.設x,y,z都是非零實數,則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,試用列舉法表示集合b=
9.把下列集合用另一種方法表示出來:
(1)(2)
(3)(4)
10.設a,b為整數,把形如a+b的一切數構成的集合記為m,設,試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=
(1)若a中只有一個元素,求a的值,并求出這個元素;
(2)若a中至多只有一個元素,求a的取值集合。
12.若-3,求實數a的值。
說教材:
1、地位、作用和特點:
《》是高中數學課本第冊(修)的第章“”的第節內容,高中數學課本說課稿。
本節是在學習了之后編排的。通過本節課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎,所以是本章的重要內容。此外,《》的知識與我們日常生活、生產、科學研究有著密切的聯系,因此學習這部分有著廣泛的現實意義。
教學目標:
根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:
(1)知識目標:A、B、C
(2)能力目標:A、B、C
(3)德育目標:A、B
教學的重點和難點:
(1)教學重點:
(2)教學難點:
二、說教法:
基于上面的教材分析,我根據自己對研究性學習“啟發式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創設問題情景,充分調動學生求知欲,并以此來激發學生的探究心理。二是運用啟發式教學方法,就是把教和學的各種方法綜合起來統一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規律,觸發學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數學思考方法(聯想法、類比法、數形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數學思想方法,培養學生的探索能力和創造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節課設計如下教學程序:
導入新課新課教學
反饋發展
三、說學法:
學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優化教學程序來增強學法指導的目的性和實效性。在本節課的教學中主要滲透以下幾個方面的學法指導。
1、培養學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。
本節教師通過列舉具體事例來進行分析,歸納出,并依
據此知識與具體事例結合、推導出,這正是一個分析和推理的全過程。
2、讓學生親自經歷運用科學方法探索的過程。主要是努力創設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過
演示,創設探索規律的情境,引導學生以可靠的事實為基礎,經過抽象思維揭示內在規律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。
3、讓學生在探索性實驗中自己摸索方法,觀察和分析現象,從而發現“新”的問題或探索出“新”的規律。從而培養學生的發散思維和收斂思維能力,激發學生的創造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。
4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發現等探究環節選擇合適的概念、規律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養成認真分析過程、善于比較的好習慣,又有利于培養學生通過現象發掘知識內在本質的能力。
四、教學過程:
(一)、課題引入:
教師創設問題情景(創設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。C、講述數學科學史上的有關情況。)激發學生的探究欲望,引導學生提出接下去要研究的問題。
(二)、新課教學:
1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。
2、組織學生進行新問題的實驗方法設計—這時在設計上最好是有對比性、數學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數據,模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。
(三)、實施反饋:
1、課堂反饋,遷移知識(最好遷移到與生活有關的例子)。讓學生分析有關的問題,實現知識的升華、實現學生的再次創新。
2、課后反饋,延續創新。通過課后練習,學生互改作業,課后研實驗,實現課堂內外的綜合,實現創新精神的延續。
五、板書設計:
在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。
六、說課綜述:
以上是我對《》這節教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。
總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創造能力為指導思想。并且能從各種實際出發,充分利用各種教學手段來激發學生的學習興趣,體現了對學生創新意識的培養。
教學目標
掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。
教學過程
等比數列性質請同學們類比得出。
【方法規律】
1、通項公式與前n項和公式聯系著五個基本量,“知三求二”是一類最基本的運算題。方程觀點是解決這類問題的基本數學思想和方法。
2、判斷一個數列是等差數列或等比數列,常用的方法使用定義。特別地,在判斷三個實數
a,b,c成等差(比)數列時,常用(注:若為等比數列,則a,b,c均不為0)
3、在求等差數列前n項和的(小)值時,常用函數的思想和方法加以解決。
【示范舉例】
例1:(1)設等差數列的前n項和為30,前2n項和為100,則前3n項和為。
(2)一個等比數列的前三項之和為26,前六項之和為728,則a1=,q=。
例2:四數中前三個數成等比數列,后三個數成等差數列,首末兩項之和為21,中間兩項之和為18,求此四個數。
例3:項數為奇數的等差數列,奇數項之和為44,偶數項之和為33,求該數列的中間項。
教學內容背景材料:
義務教育課程標準實驗教科書(人教版)二年級上冊第八單元的排列與組合
教學目標:
1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數和組合數。
2、經歷探索簡單事物排列與組合規律的過程。
3、培養學生有順序地全面地思考問題的意識。
4、感受數學與生活的緊密聯系,激發學生學好數學的信心。
教學重點:經歷探索簡單事物排列與組合規律的過程
教學難點:初步理解簡單事物排列與組合的不同
教具準備:教學課件
學具準備:每生準備3張數字卡片,學具袋
教學過程:
一、創設問題情境:
師:森林學校的數學課上,猴博士出了這樣一道題(課件出示)用數字1、2能寫出幾個兩位數?問題剛說完小動物們都紛紛舉手說能寫成兩個數:12、21。接著猴博士又加上了一個數字3,問:“用數字1、2、3能寫出幾個兩位數呢?”小豬站起來說能寫成3個,小熊說5個,小狗說7個,到底能寫出幾個呢?用學生感興趣的童話故事引入,易于激發起學生探究的興趣,同時也向學生滲透助人為樂的品德教育。
1.自主合作探索新知
試一試
師:請同學們也試著寫一寫,如果你覺得直接寫有困難的話可以借助手中的數字卡片擺一擺。
學生活動教師巡視。(學生所寫的個數可能不一樣,有多有少,找幾份重復的或個數少的展示。)引導學生根據自己的實際情況選擇不同的方法探究新知,體現了不同的孩子用不同的方式學習數學這一新的教學理念,易于吸引不同層次的學生積極主動的參與到活動中來。
2.發現問題
學生匯報所寫個數,教師根據巡視的情況重點展示幾份,引導學生發現問題:有的重復寫了,有的漏寫了。
引導學生發現寫數過程中出現的問題,并就此展開討論、交流,遵循了學生的認知特點。學生在交流的過程中體驗到解決問題方法的多樣性,并根據自己的實際選擇不同的方法,尊重了學生的主體地位。在此過程中學生收獲的不僅是知識本身,更多的是能力、情感。
3.小組討論
師:每個同學寫出的個數不同,怎樣才能很快寫出所有的用數字1、2、3組成的兩位數,并做到不重復不遺漏呢?
學生以小組為單位交流討論。
4.小組匯報
匯報時可能會出現下面幾種情況:
1、無序的。
2、先寫出1在十位上的有12、13;再寫出2在十位上的有21、23;再寫出3在十位上的有31、32。
3、用數字1、2能寫出12、21;用數字2、3能寫出23、32;用數字1、3能寫出13、31。
4、引導學生及時評價每一種方法的優缺點,使其把適合自己的方法掌握起來。
5.小結
教師簡單小結學生所想方法引出練習內容。
6、拓展應用
數字2、3、4、5、出個兩位數?寫完交流。(或者也可用這樣一道題:用△○□能擺成6種排法,例如:□○△
請你試著擺出其他幾種排法。學習的目的是為了應用,讓學生自主的選擇方法進行練習,有利于培養學生的自主學習的能力。
二、組合
故事引入
師:下課了小狗、小熊、小豬做“找朋友”的游戲,好朋友見面之后要握握手,每兩只小動物握一次手,小狗、小熊、小豬一共握幾次手?怎樣握?用同一條故事主線貫穿整節課的始終,以問題串的形式展開全課,能讓學生始終保持濃厚的學習興趣,充分體驗到數學與生活的聯系。
探索新知
學生在充分獨立思考的基礎上展開小組交流,并3人一組親身實踐一下。
匯報思考的過程。
三、比較
師:剛才我們幫森林學校的小動物們解決了用數字1、2、3能寫幾個兩位數;3只小動物每兩個握一次手共握幾次手的問題,森林學校的小動物們直夸同學們聰明呢!通過解決這兩個問題你發現了什么?
生可能說用3個數字能寫出6個兩位數,3只小動物每兩人握一次手共握3次。
引導學生明確排列與順序有關而組合與順序無關。兩只小動物握一次手個?通過比較明確兩種問題的同與不同,便于建立起清晰的知識結構,進一步深化學生的認識。
四、拓展應用
1.小狗要參加學校的時裝表演,媽媽為它準備了4件衣服(課件出示2件上衣、2件褲子的圖片),請你幫小狗設計一下共有多少種穿法。如果需要的話可以用學具擺一擺。
交流想法。在兒童的生活經驗里積累了一些搭配衣服,購物花錢的知識經驗,所以學生樂于參與。
2.完成課本99頁的第2題
五、課堂總結