工作心得_读书心得_学习心得_找心得体会范文就上学道文库

初中數學教案范例大全

| 新華0

教案使教師能夠弄通教材內容,準確把握教材的重點與難點,進而選擇科學、恰當的教學方法。寫好初中數學教案范例大全是有技巧的,接下來給大家分享初中數學教案范例大全,方便大家學習。

初中數學教案范例大全篇1

一、教學案例的特點

1、案例與論文的區別

從文體和表述方式上看,論文是以說理為目的,以議論為主;案例則以記錄為目的,以記敘為主,兼有議論和說明。也就是說,案例是講一個故事,是通過故事說明道理。

從寫作的思路和思維方式來看,論文寫作一般是一種演繹思維,思維的方式是從抽象到具體;案例寫作是一種歸納思維,思維的方式是從具體到抽象。

2、案例與教案、教學設計的區別

教案和教學設計都是事先設想的教學思路,是對準備實施的教學措施的簡要說明;教學案例則是對已經發生的教學過程的反映。一個寫在教之前,一個寫在教之后;一個是預期達到什么目標,一個是結果達到什么水平。教學設計不宜于交流,教學案例適宜于交流。

3、案例與教學實錄的區別

案例與教學實錄的體例比較接近,它們都是對教學情景的描述,但教學實錄是有聞必錄,而案例則是有所選擇的,教學案例是根據目的和功能選擇內容,并且必須有作者的反思(價值判斷或理性思考)。

4、教學案例的特點是

——真實性:案例必須是在課堂教學中真實發生的事件;

——典型性:必須是包括特殊情境和典型案例問題的故事;

——濃縮性:必須多角度地呈現問題,提供足夠的信息;

——啟發性:必須是經過研究,能夠引起討論,提供分析和反思。

二、數學案例的結構要素

從文章結構上看,數學案例一般包含以下幾個基本的元素。

(1)背景。案例需要向讀者交代故事發生的有關情況:時間、地點、人物、事情的起因等。如介紹一堂課,就有必要說明這堂課是在什么背景情況下上的,是一所重點學校還是普通學校,是一個重點班級還是普通班級,是有經驗的優秀教師還是年青的新教師執教,是經過準備的“公開課”還是平時的“家常課”,等等。背景介紹并不需要面面俱到,重要的是說明故事的發生是否有什么特別的原因或條件。

(2)主題。案例要有一個主題:寫案例首先要考慮我這個案例想反映什么問題,例如是想說明怎樣轉變學困生,還是強調怎樣啟發思維,或者是介紹如何組織小組討論,或是觀察學生的獨立學習情況,等等。或者是一個什么樣的數學任務解決過程和方法,在課程標準中數學任務認知水平的要求怎么樣,在課堂教學中數學任務認知水平的發展怎么樣等等。動筆前都要有一個比較明確的想法。比如學校開展研究性學習活動,不同的研究課題、研究小組、研究階段,會面臨不同的問題、情境、經歷,都有自己的獨特性。寫作時應該從最有收獲、最有啟發的角度切入,選擇并確立主題。

(3)情節。有了主題,寫作時就不會有聞必錄,而要是對原始材料進行篩選。首先需要教師對課堂教學中師生雙方(外顯的和內隱的)活動的清晰感知,然后是有針對性地向讀者交代特定的內容,把關鍵性的細節寫清楚。比如介紹教師如何指導學生掌握學習數學的方法,就要把學生怎么從“不會”到“會”的轉折過程,要把學習發生發展過程的細節寫清楚,要把教師觀察到的學生學習行為,學習行為反映的學生思想、情感、態度寫清楚,或者把小組合作學習的突出情況寫清楚,或者把個別學生獨立學習的典型行為寫清楚。不能把“任務”布置了一番,把“方法”介紹了一番,說到“任務”的完成過程,說到“掌握”的程度就一筆帶過了。

(4)結果。一般來說,教案和教學設計只有設想的措施而沒有實施的結果,教學實錄通常也只記錄教學的過程而不介紹教學的效果;而案例則不僅要說明教學的思路、描述教學的過程,還要交代學生學習的結果,即這種教學措施的即時效果,包括學生的反映和教師的感受等。讀者知道了結果,將有助于加深對整個過程的內涵的了解。

(5)反思。對于案例所反映的主題和內容,包括教育教學指導思想、過程、結果,對其利弊得失,作者要有一定的看法和分析。反思是在記敘基礎上的議論,可以進一步揭示事件的意義和價值。比如同樣是一個學困生轉化的事例,我們可以從社會學、教育學、心理學、學習理論等不同的理論角度切入,揭示成功的原因和科學的規律。反思不一定是理論闡述,也可以是就事論事、有感而發,引起人的共鳴,給人以啟發。

三、初中數學教學案例主題的選擇

新課程理念下的初中數學教學案例,可從以下六方面選擇主題:

(1)體現讓學生動手實踐、自主探究、合作交流的教學方式;

(2)體現教師幫助學生在自主探究、合作交流的過程中真正理解和掌握基本的數學知識和技能、數學思想和方法,獲得廣泛的數學活動經驗;

(3)體現讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程,采用“問題情境——建立模型——解釋、應用與拓展”的模式教學的成功經驗;

(4)體現數學與信息技術整合的教學方法;

(5)體現教師在教學過程中的組織者、引導者與合作者的作用;

(6)體現教學中對學生情感、態度的關注和評價,以及怎樣幫助不同的人在數學上獲得不同的發展,等等。

初中數學教案范例大全篇2

一、教材及學情分析

《二次函數的圖像與性質》是北師大版九年級下冊第二章第二節的內容,在學生已經學習過一次函數(包括正比例函數)、反比例函數的圖像與性質,以及會建立二次函數模型和理解二次函數的有關概念的基礎上進行的,它既是前面所學知識的應用、拓展,是對前面所學一次函數、反比例函數圖像與性質的一次升華,又是今后學習《確定二次函數的表達式》《二次函數的應用》、《二次函數與一元二次方程》的預備知識,又是學生高中階段數學學習的基礎知識,它在教材中起著非常重要的作用。另外,本節課最大特點,是結合圖形來研究二次函數的性質,這充分體現了一個很重要的數學思想——數形結合數學思想。因此,這一節課,無論是在知識上,還是對學生動手能力培養上都有著十分重要的作用。

二、教學目標及重、難點分析

通過分析,我們知道,《二次函數的圖像與性質》在整個教材體系中,起著承上啟下的作用,有著廣泛的應用。我認為這節課的重點是:作出函數=ax2+c的圖象,比較函數=ax2和函數=ax2+c的異同,了解它們的性質;函數=ax2+c的圖象與性質的理解,掌握拋物線的上下平移規律是本節課的難點。

知識與技能目標

(1)會做函數=ax2和=ax2+c的圖象,并能比較它們的異同;理解a,c對二次函數圖象的影響,能正確說出兩函數的開口方向,對稱軸和頂點坐標;

(2)了解拋物線=ax2上下平移規律。

過程與方法目標

本節課,過程是由抽象到直觀,再由直觀到抽象(既二次函數=ax2+c的關系式——作出圖像——說出二次函數=ax2+c的圖像與性質),培養學生分析問題、解決問題的能力,培養學生觀察、探討、分析、分類討論的能力。

情感、態度與價值觀

引導學生養成全面看問題、分類討論的學習習慣,通過直觀多媒體演示和學生動手作圖、分析,激發學生學習數學的積極性。

三、教學結構設計

建立以“實施主體性教學,培養學生自主探究的能力”為主的課堂教學結構模式——學教結合式。讓學生先自己動手畫圖,然后由老師來演示,這樣從直觀的看圖觀察,思考,提問,容易激發學生的求知欲望,調動學生學習的興趣。以“學教結合”為模式的課堂結構設計為“三個階段”:

①準備階段教師先從回憶函數=ax2圖象與性質,從而導入二次函數=ax2+c的圖像與性質,進而帶出本節課的學習目標。

②參與階段學生圍繞目標自我表現,相互交流,啟發理解。

③應用與升華階段這一階段是讓學生從“學會”到“會學”的升華。延伸階段要做到“三化”,一是知識的深化,二是知識向能力、技能的轉化,三是學習方法的固化,即演練鞏固,牢固掌握其方法。

初中數學教案范例大全篇3

一、教材分析

冪函數是學生在系統學習了指數函數、對數函數之后研究的又一類基本初等函數。是對函數概念及性質的應用,能進一步培養利用函數的性質(定義域、值域、圖像、奇偶性、單調性)研究一個函數的意識。因而本節課更是一個對學生研究函數的方法和能力的綜合提升。從概念到圖象(),利用這五個函數的圖象探究其定義域、值域、奇偶性、單調性、公共點,概括、歸納冪函數的性質,培養學生從特殊到一般再到特殊的一般認知規律。從教材的整體安排看,學習了解冪函數是為了讓學生進一步獲得比較系統的函數知識和研究函數的方法,以便能將該方法遷移到對其他函數的研究。

二、教學目標分析

依據課程標準,結合學生的認知發展水平和心理特征,確定本節課的教學目標如下:

[知識與技能]使學生了解冪函數的定義,會畫常見冪函數的圖象,掌握冪函數的圖象和性質,初步學會運用冪函數解決問題,進一步體會數形結合的思想。

[過程與方法]引入、剖析、定義冪函數的過程,啟動觀察、分析、抽象概括等思維活動,培養學生的思維能力,體會數學概念的學習方法;通過運用多媒體的教學手段,引領學生主動探索冪函數性質,體會學習數學規律的方法,體驗成功的樂趣;對冪函數的性質歸納、總結時培養學生抽象概括和識圖能力;運用性質解決問題時,進一步強化數形結合思想。

[情感、態度與價值觀]通過生活實例引出冪函數概念,使學生體會生活中處處有數學,激發學生的學習興趣。通過本節課的學習,使學生進一步加深研究函數的規律和方法;提高學生的學習能力;養成積極主動,勇于探索,不斷創新的學習習慣和品質;樹立學科學,愛科學,用科學的精神。

三、重、難點分析

[教學重點]

(1)冪函數的定義與性質;

(2)指數α的變化對冪函數y=xα(α∈R)的影響。從知識體系看,前面有指數函數與對數函數的學習,后面有其他函數的研究,本節課的學習具有承上啟下的作用;就知識特點而言,蘊涵豐富的數學思想方法;就能力培養來說,通過學生對冪函數性質的歸納,可培養學生類比、歸納概括能力,運用數學語言交流表達的能力。

[教學難點]

(1)指數α的變化對冪函數y=xα(α∈R)性態的影響。

(2)數形結合解決大小比較以及求參數的問題。從學生認知發展看,他們具備一定的學習新函數的能力,可以通過學習指數函數與對數函數的方法來類比,但畢竟冪函數在三種初等函數中是最難的,因為它分類的情況很多,且性質多而復雜,我采用讓學生自己利用計算機作出函數的圖像,從中歸納性質的方法來突破難點。

四、學情與教法分析

1.學情分析

從學生思維特點來和認知結構看,前面學生已經學習指數函數與對數函數,對新函數的學習已經有了一定的經驗。一方面可以把本節課與前面的指數函數與對數函數進行類比學習,但另一方面本節課分類情況多,性質歸納困難,尤其是三個函數放在一起可能產生混淆。對進入高中半個學期的學生來說,雖然具備一定的分析和解決問題的能力,邏輯思維也初步形成,但缺乏冷靜、深刻,思維具有片面性、不嚴謹的特點,對問題解決的一般性思維過程認識比較模糊。

2.教法分析

學生思維活躍,求知欲強,但在思維習慣上還有待教師引導從學生原有的知識和能力出發,在教師的帶領下創設疑問,通過合作交流,共同探索,逐步解決問題。采用引導發現式的教學方法,充分利用多媒體輔助教學。通過教師點撥,啟發學生主動觀察、主動思考、動手操作、自主探究來達到對知識的發現和接受。

3.教學構想

新課標的要求是通過實例,了解y=x,的圖像,了解它們的變化情況。而原數學教學大綱要求掌握冪函數的概念及其圖像和性質,在考查掌握函數性質和運用性質解決問題時,所涉及的冪函數f(x)=xα中α限于在集合{-2,-1,-,1,2,3}中取值。新課標無論從內容的容量和難度上都要遠低于舊課標。而蘇教版的教材嚴格按照新課標要求處理此部分內容,內容體系均未超出課標要求。所以我們應以新課標為準繩,控制難度與要求。由于本節課的難點在于指數α的變化對冪函數y=xα(α∈R)性態的影響,本身冪函數比較抽象,所以我采用在多媒體教室讓學生用Excel來模擬得到圖象,再從圖象上觀察、歸納函數的性質。從心理學上講,自己經歷知識的發生發展過程,印象更深刻,學生容易接受與理解。

初中數學教案范例大全篇4

一、教材分析

本節課在討論了二次函數y=a(x-h)2+k(a≠0)的圖像的基礎上對二次函數y=ax2+bx+c(a≠0)的圖像和性質進行研究。主要的研究方法是通過配方將y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)轉化,體會知識之間在內的聯系。在具體探究過程中,從特殊的例子出發,分別研究a>0和a<0的情況,再從特殊到一般得出y=ax2+bx+c(a≠0)的圖像和性質。

二、學情分析

本節課前,學生已經探究過二次函數y=a(x-h)2+k(a≠0)的圖像和性質,面對一般式向頂點式的轉化,讓學上體會化歸思想,分析這兩個式子的區別。

三、教學目標

(一)知識與能力目標

1.經歷求二次函數y=ax2+bx+c(a≠0)的對稱軸和頂點坐標的過程;

2.能通過配方把二次函數y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,從而確定開口方向、頂點坐標和對稱軸。

(二)過程與方法目標

通過思考、探究、化歸、嘗試等過程,讓學生從中體會探索新知的方式和方法。

(三)情感態度與價值觀目標

1.經歷求二次函數y=ax2+bx+c(a≠0)的對稱軸和頂點坐標的過程,滲透配方和化歸的思想方法;

2.在運用二次函數的知識解決問題的過程中,親自體會到學習數學知識的價值,從而提高學生學習數學知識的興趣并獲得成功的體驗。

四、教學重難點

1.重點

通過配方求二次函數y=ax2+bx+c(a≠0)的對稱軸和頂點坐標。

2.難點

二次函數y=ax2+bx+c(a≠0)的圖像的性質。

五、教學策略與設計說明

本節課主要滲透類比、化歸數學思想。對比一般式和頂點式的區別和聯系;體會式子的恒等變形的重要意義。

六、教學過程

教學環節(注明每個環節預設的時間)

(一)提出問題(約1分鐘)

教師活動:形如y=a(x-h)2+k(a≠0)的拋物線的對稱軸、頂點坐標分別是什么?那么對于一般式y=ax2+bx+c(a≠0)頂點坐標和對稱軸又怎樣呢?圖像又如何?

學生活動:學生快速回答出第一個問題,第二個問題引起學生的思考。

目的:由舊有的知識引出新內容,體現復習與求新的關系,暗示了探究新知的方法。

(二)探究新知

1.探索二次函數y=0.5x2-6x+21的函數圖像(約2分鐘)

教師活動:教師提出思考問題。這里教師適當引導能否將次一般式化成頂點式?然后結合頂點式確定其頂點和對稱軸。

學生活動:討論解決

目的:激發興趣

2.配方求解頂點坐標和對稱軸(約5分鐘)

教師活動:教師板書配方過程:y=0.5x2-6x+21=0.5(x2-12x+42)

=0.5(x2-12x+36-36+42)

=0.5(x-6)2+3

教師還應強調這里的配方法比一元二次方程的配方稍復雜,注意其區別與聯系。

學生活動:學生關注黑板上的講解內容,注意自己容易出錯的地方。

目的:即加深對本課知識的認知有增強了配方法的應用意識。

3.畫出該二次函數圖像(約5分鐘)

教師活動:提出問題。這里要引導學生是否可以通過y=0.5x2的圖像的平移來說明該函數圖像。關注學生在連線時是否用平滑的曲線,對稱性如何。

學生活動:學生通過列表、描點、連線結合二次函數圖像的對稱性完成作圖。

目的:強化二次函數圖像的畫法。即確定開口方向、頂點坐標、對稱軸結合圖像的對稱性完成圖像。

4.探究y=-2x2-4x+1的函數圖像特點(約3分鐘)

教師活動:教師提出問題。找學生板演拋物線的開口方向、頂點和對稱軸內容,教師巡視,學生互相查找問題。這里教師要關注學生是否真正掌握了配方法的步驟及含義。

學生活動:學生獨立完成。

目的:研究a<0時一個具體函數的圖像和性質,體會研究二次函數圖像的一般方法。

5.結合該二次函數圖像小結y=ax2+bx+c(a≠0)的性質(約14分鐘)

教師活動:教師將y=ax2+bx+c(a≠0)通過配方化成y=a(x-h)2+k(a≠0)的形式。確定函數頂點、對稱軸和開口方向并著重討論分析a>0和a<0時,y隨x的變化情況、拋物線與y的交點以及函數的最值如何。

學生活動:仔細理解記憶一般式中的頂點坐標、對稱軸和開口方向;理解y隨x的變化情況。

目的:體會由特殊到一般的過程。體驗、觀察、分析二次函數圖像和性質。

6.簡單應用(約11分鐘)

教師活動:教師板書:已知拋物線y=0.5x2-2x+1.5,求這條拋物線的開口方向、頂點坐標、對稱軸圖像和y軸的交點坐標并確定y隨x的變化情況和最值。

教師巡視,個別指導。教師在這里可以用兩種方法解決該問題:i)用配方法如例題所示;ii)我們可以先求出對稱軸,然后將對稱軸代入到原函數解析式求其函數值,此時對稱軸數值和所求出的函數值即為頂點的橫、縱坐標。

學生活動:學生先獨立完成,約3分鐘后討論交流,最后形成結論。

目的:鞏固新知

課堂小結(2分鐘)

1.本節課研究的內容是什么?研究的過程中你遇到了哪些知識上的問題?

2.你對本節課有什么感想或疑惑?

布置作業(1分鐘)

1.教科書習題22.1第6,7兩題;

2.《課時練》本節內容。

板書設計

提出問題畫函數圖像學生板演練習

例題配方過程

到頂點式的配方過程一般式相關知識點

教學反思

在教學中我采用了合作、體驗、探究的教學方式。在我引導下,學生通過觀察、歸納出二次函數y=ax2+bx+c的圖像性質,體驗知識的形成過程,力求體現“主體參與、自主探索、合作交流、指導引探”的教學理念。整個教學過程主要分為三部分:第一部分是知識回顧;第二部分是學習探究;第三部分是課堂練習。從當堂的反饋和第二天的作業情況來看,絕大多數同學能掌握本節課的知識,達到了學習目標中的要求。

我認為優點主要包括:

1.教態自然,能注重身體語言的作用,聲音洪亮,提問具有啟發性。

2.教學目標明確、思路清晰,注重學生的自我學習培養和小組合作學習的落實。

3.板書字體端正,格式清晰明了,突出重點、難點。

4.我覺的精彩之處是求一般式的頂點坐標時的第二種方法,給學生減輕了一些負擔,不一定非得配方或運用公式求頂點坐標。

所以我對于本節課基本上是滿意的。但也有很多需要改進的地方主要表現在:

1.知識的生成過程體現的不夠具體,有些急于求成。在學生活動中自己引導的較少,時間較短,討論的不夠積極;

2.一般式圖像的性質自己總結的較多,學生發言較少,有些知識完全可以有學生提出并生成,這樣的結論學生理解起來會更深刻;

3.學生在回答問題的過程中我老是打斷學生。提問一個問題,學生說了一半,我就迫不及待地引導他說出下一半,有的時候是我替學生說了,這樣學生的思路就被我打斷了。破壞學生的思路是我們教師最大的毛病,此頑疾不除,教學質量難以保證。

4.合作學習的有效性不夠。正所謂:“水本無波,相蕩乃成漣漪;石本無火,相擊而生靈光。”只有真正把自主、探究、合作的學習方式落到實處,才能培養學生成為既有創新能力,又能適應現代社會發展的公民。

重新去解讀這節課的話我會注意以上一些問題,再多一些時間給學生,讓他們去體驗,探究而后形成自己的知識。

初中數學教案范例大全篇5

一、教材內容及設置依據

【教材內容】本節教材的主要內容是通過對有理數加法、減法的運算的回顧,學習包括分數和小數的有理數的加減混合運算,理解其方法;應用有理數的加減混合運算,解決實際問題。

【設置依據】教材內容的確定主要根據知識的社會作用性、教育性原則(對培養學生的數學思維、數學能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進一步深造、參加實際工作和適應日常生活準備條件)、可接受性原則(即考慮學生的認識水平、接受能力、生理心理特征,又要著眼于學生的不斷發展);還要與現實生活、科技發展相適應,逐步深透現代教學思想。

二、教材的地位和作用

本節內容是在學習了有理數的加法、有理數的減法的基礎上學習的,是前面知識的延伸和加強,同時又是后面所要學習的有理數的乘法、除法及有理數的混合運算的基礎,

特別是減法可以轉化為加法為后面的除法可以轉化為乘法的學習提供了

類比依據。也為后面學習代數式的合并同類項及有關的恒等變形奠定了基礎,因此具有承上啟下的重要作用。

三、對重點、難點的處理

【對重點的處理】本節的重點是有理數加減混合運算的方法及在實際生活中的應用。為了突出重點,教師應盡量從實際問題引入、應盡可能的在課堂上創設具體教學情境,注重使學生在具體情境中體會運算的方法。同時我們也可以根據學生的接受情況和每節課的具體情況,盡可能的把每節課的“課堂練習”和“習題”的內容劃分成不同的板塊,如:1、知識鞏固型2、實際應用型3、方法多變型4、知識拓展型等。

【對難點的處理】對于難點的處理,因為新教材“強調要給學生足夠的空間和時間”,因此教學時我們應盡量從學生已有的生活經驗和已有的知識經驗出發,或用“已知”去解決“未知”的思想引導學生,鼓勵學生大膽的猜測、交流,充分的探索。同時淡化形式,突出實質(不出現代數和的定義,只是讓學生理解有理數的加減運算可以統一成加法以及加法運算可以寫成省略括號及前面加號的形式,重點是讓學生通過具體情境對“代數和”加以體會)

四、關于教學方法的選用

根據本節課的內容和學生的實際水平,本節課可采用的方法:

1、情境體驗:通過教師創設貼近學生生活實際的教學情境,讓學生融會到課堂中去,產生共鳴,激發興趣,鼓勵學生觀察、分析、探索,加深其對本節內容的理解,培養學生解決問題的能力。

2、引導發現法:它符合辯證唯物主義中內因與外因相互作用的觀點,符合教學論中的自覺性和積極性、鞏固性、可接受性、教學與發展相結合、教師的主導作用與學生的主體地位相統一等原則。引導發現法的關鍵是通過教師的引導啟發,充分調動學生學習的主動性。

3、小組合作、探究討論:通過合作討論,使學生形成一個“學習共同體”,在這個共同體內相互交流、相互溝通、相互啟發、相互補充,分享彼此的思考、經驗和知識,交流彼此的情感、體驗和觀念,共同體驗成功的喜悅,使學生體會到集體的力量,形成合作的意識,產生合作的愿望。

五、關于學法的指導

“授人以魚,不如授人以漁”,在教給學生知識的同時,要教給他們好的學習方法,讓他們“會學習”在本節課的教學中,在提出問題后,要鼓勵學生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養了思維能力。同時意識到:數學是生活實際中的數學、大自然中的數學,萌生了用數學解決實際問題的意識、愿望。

六、課時安排:1課時

教學程序:

一、復習鋪墊:

首先利用多媒體出示一組有關有理數的加法、減法的題目,讓學生進行速算比賽,看誰做的又對又快。

1、45+(-23)2、9-(-5)

3、-28-(-37)4、(-13)+0

5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)

從四排學生中個推選一名學生代表板演6、7、8、題。

通過比賽的方式,符合學生的心理特點,迎合了學生好勝的心理,激起了學生學習的內在動力,激發了學習的興趣。

然后教師與學生一起對題目進行評判,對優勝的學生進行表揚,對其他學生加以鼓勵,使他們意識到“勝敗乃兵家常事”,關鍵要有信心,要有高昂的斗志。通過練習,學生已在不知不覺中復習了有理數的加法、減法法則,特別是減法法則,加深了印象,這符合教學論中的鞏固性原則,為后面學習有理數的加減混合運算奠定了基礎。

二、新知探索:

1、出示引例1:一架飛機作特技表演,起飛后的高度變化如下表:高度變化記作

上升4.5千米+4.5千米

下降3.2千米-3.2千米

上升1.1千米+1.1千米

下降1.4千米-1.4千米

此時飛機比起飛點高了多少米?

讓學生分組探究討論,讓學生發表自己的見解,不難得出兩種算法:

①4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4

=1.3+1.1+(-1.4)=1.3+1.1-1.4

=2.4+(-1.4)=2.4-1.4

=1千米=1千米

教師隨之提出問題:比較以上兩種算法,你發現了什么?通過學生的合作討論、教師的引導、規納、總結可得出:加減法混合運算可以統一成加法;加法運算可以寫成省略括號及前面加號的形式。使學生在解決問題的過程中體會到“代數和“的含義。這里不要求出現“代數和”的名稱。通過小組合作,探究討論,讓每一個學

初中數學教案范例大全篇6

教學目標:

1、了解公式的意義,使學生能用公式解決簡單的實際問題;

2、初步培養學生觀察、分析及概括的能力;

3、通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

教學建議:

一、教學重點、難點

重點:通過具體例子了解公式、應用公式。

難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

二、重點、難點分析

人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

三、知識結構

本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

四、教法建議

1、對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

2、在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

3、在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

教學設計示例:

一、教學目標

(一)知識教學點

1、使學生能利用公式解決簡單的實際問題。

2、使學生理解公式與代數式的關系。

(二)能力訓練點

1、利用數學公式解決實際問題的能力。

2、利用已知的公式推導新公式的能力。

(三)德育滲透點

數學來源于生產實踐,又反過來服務于生產實踐。

(四)美育滲透點

數學公式是用簡潔的數學形式來闡明自然規定,解決實際問題,形成了色彩斑斕的多種數學方法,從而使學生感受到數學公式的簡潔美。

二、學法引導

1、數學方法:引導發現法,以復習提問小學里學過的公式為基礎、突破難點。

2、學生學法:觀察→分析→推導→計算。

三、重點、難點、疑點及解決辦法

1、重點:利用舊公式推導出新的圖形的計算公式。

2、難點:同重點。

3、疑點:把要求的圖形如何分解成已經熟悉的圖形的和或差。

四、課時安排

1課時

五、教具學具準備

投影儀,自制膠片。

六、師生互動活動設計

教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發學生求圖形的面積,師生總結求圖形面積的公式。

七、教學步驟

(一)創設情景,復習引入

師:同學們已經知道,代數的一個重要特點就是用字母表示數,用字母表示數有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏。

在學生說出幾個公式后,師提出本節課我們應在小學學習的基礎上,研究如何運用公式解決實際問題。

板書:公式

師:小學里學過哪些面積公式?

板書:S=ah

(出示投影1)。解釋三角形,梯形面積公式

【教法說明】讓學生感知用割補法求圖形的面積。

初中數學教案范例大全篇7

教學目標

1.經歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。

2.通過驗證過程中數與形的結合,體會數形結合的思想以及數學知識之間內在聯系,每一部分知識并不是孤立的。

3.通過豐富有趣的拼圖活動,經歷觀察、比較、拼圖、計算、推理交流等過程,發展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經驗。

4.通過獲得成功的體驗和克服困難的經歷,增進數學學習的信心。通過豐富有趣拼的圖活動增強對數學學習的興趣。

重點1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認識。

2.通過拼圖驗證公式的過程,使學習獲得一些研究問題與合作交流的方法與經驗。

難點利用數形結合的方法驗證公式

教學方法動手操作,合作探究課型新授課教具投影儀

教師活動學生活動

情景設置:

你已知道的關于驗證公式的拼圖方法有哪些?(教師在此給予學生獨立思考和討論的時間,讓學生回想前面拼圖。)

新課講解:

把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常常可以得到一些有用的式子。美國第二十任總統伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數學史上被傳為佳話。他是這樣分析的,如圖所示:

教師接著在介紹教材第94頁例題的拼法及相關公式

提問:還能通過怎樣拼圖來解決以下問題

(1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應的等式;

(2)任意寫出一個關于a、b的二次三項式,如a2+4ab+3b2

試用拼一個長方形的方法,把這個二次三項式因式分解。

這個問題要給予學生充足的時間和空間進行討論和拼圖,教師在這要引導適度,不要限制學生思維,同時鼓勵學生在拼圖過程中進行交流合作

了解學生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導,并讓學生展示自己的拼圖及讓學生講解驗證公式的方法,并根據不同學生的不同狀況給予適當的引導,引導學生整理結論。

小結:

從這節課中你有哪些收獲?

(教師應給予學生充分的時間鼓勵學生暢所欲言,只要是學生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學生所說的進行全面的總結。)

學生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

學生拿出準備好的硬紙板制作

給學生充分的時間進行拼圖、思考、交流經驗,對于有困難的學生教師要給予適當引導。

作業第95頁第3題

板書設計

復習例1板演

………………

………………

……例2……

………………

………………

教學后記

初中數學教案范例大全篇8

一、素質教育目標

(一)知識教學點

1.理解有理數乘方的意義.

2.掌握有理數乘方的運算.

(二)能力訓練點

1.培養學生觀察、分析、比較、歸納、概括的能力.

2.滲透轉化思想.

(三)德育滲透點:培養學生勤思、認真和勇于探索的精神.

(四)美育滲透點

把記成,顯示了乘方符號的簡潔美.

二、學法引導

1.教學方法:引導探索法,嘗試指導,充分體現學生主體地位.

2.學生學法:探索的性質→練習鞏固

三、重點、難點、疑點及解決辦法

1.重點:運算.

2.難點:運算的符號法則.

3.疑點:①乘方和冪的區別.

②與的區別.

四、課時安排

1課時

五、教具學具準備

投影儀、自制膠片.

六、師生互動活動設計

教師引導類比,學生討論歸納乘方的概念,教師出示探索性練習,學生討論歸納乘方的性質,教師出示鞏固性練習,學生多種形式完成.

七、教學步驟

(一)創設情境,導入 新課

師:在小學我們已經學過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?

生:可以記作,讀作的四次方.

師:呢?

生:可以記作,讀作的五次方.

師:(為正整數)呢?

生:可以記作,讀作的次方.

師:很好!把個相乘,記作,既簡單又明確.

【教法說明】教師給學生創設問題情境,鼓勵學生積極參與,大大調動了學生學習的積極性.同時,使學生認識到數學的發展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學生通過類推得到的.

師:在小學對底數,我們只能取正數.進入中學以后我們學習了有理數,那么還可取哪些數呢?請舉例說明.

生:還可取負數和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.

非常好!對于中的,不僅可以取正數,還可以取0和負數,也就是說可以取任意有理數,這就是我們今天研究的課題:(板書).

【教法說明】對于的范圍,是在教師的引導下,學生積極動腦參與,并且根據初一學生的認知水平,分層逐步說明可以取正數,可以取零,可以取負數,最后總結出可以取任意有理數.

(二)探索新知,講授新課

1.求個相同因數的積的運算,叫做乘方.

乘方的結果叫做冪,相同的因數叫做底數,相同的因數的個數叫做指數.一般地,在中,取任意有理數,取正整數.

注意:乘方是一種運算,冪是乘方運算的結果.看作是的次方的結果時,也可讀作的次冪.

鞏固練習(出示投影1)

(1)在中,底數是__________,指數是___________,讀作__________或讀作___________;

(2)在中,-2是__________,4是__________,讀作__________或讀作__________;

(3)在中,底數是_________,指數是__________,讀作__________;

(4)5,底數是___________,指數是_____________.

【教法說明】此組練習是鞏固乘方的有關概念,及時反饋學生掌握情況.(2)、(3)小題的區別表示底數是-2,指數是4的冪;而表示底數是2,指數是4的冪的相反數.為后面的計算做鋪墊.通過第(4)小題指出一個數可以看作這個數本身的一次方,如5就是,指數1通常省略不寫.

師:到目前為止,對有理數業說,我們已經學過幾種運算?分別是什么?其運算結果叫什么?

學生活動:同學們思考,前后桌同學互相討論交流,然后舉手回答.

生:到目前為止,已經學習過五種運算,它們是:

運算:加、減、乘、除、乘方;

運算結果:和、差、積、商、冪;

教師對學生的回答給予評價并鼓勵.

【教法說明】注重學生在認知過程中的思維.主動參與,通過學生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養學生歸納、總結的能力.

師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.

學生活動:學生積極思考,同桌相互討論,并在練習本上舉例.

【教法說明】通過學生積極動腦,主動參與,得出可以利用有理數的乘法運算來進行有理數乘方的運算.向學生滲透轉化的思想.

2.練習:(出示投影2)

計算:1.(1)2, (2), (3), (4).

2.(1),,,.

(2)-2,,.

3.(1)0, (2), (3), (4).

學生活動:學生獨立完成解題過程,請三個學生板演,教師巡回指導,待學生完成后,師生共同評價對錯,并予以鼓勵.

師:請同學們觀察、分析、比較這三組題中,每組題中底數、指數和冪之間有什么聯系?

先讓學生獨立思考,教師邊巡視邊做適當提示.然后讓學生討論,老師加入某一小組.

生:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數,零的任何次冪都是零.

師:請同學們繼續觀察與,與中,底數、指數和冪之間有何聯系?你能得出什么結論呢?

學生活動:學生積極思考,同桌之間、前后桌之間互相討論.

生:互為相反數的兩個數的奇次冪仍互為相反數,偶次冪相等.

師:請同學思考一個問題,任何一個數的偶次冪是什么數?

生:任何一個數的偶次冪是非負數.

師:你能把上述結論用數學符號表示嗎?

生:(1)當時,(為正整數);

(2)當

(3)當時,(為正整數);

(4)(為正整數);

(為正整數);

(為正整數,為有理數).

【教法說明】教師把重點放在教學情境的設計上,通過學生自己探索,獲取知識.教師要始終給學生創造發揮的機會,注重學生參與.學生通過特殊問題歸納出一般性的結論,既訓練學生歸納總結的能力和口頭表達的能力,又能使學生對法則記得牢,領會的深刻.

初中數學教案范例大全篇9

學習目標:

1、能用不同的方法探索并了解三角形3個內角之間的關系;;

2、會利用三角形的內角和定理解決問題;

3、知道直角三角形的兩個銳角互余的關系;

4、通過觀察、想象、推理、交流等活動,發展空間觀念、推理能力和有條理地表達能力。

學習重點:

三角形的內角和定理

學習難點:

三角形內角和定理推理和應用

教學過程:

一、情境創設,感悟新知

1、三角形藍和三角形紅見面了,藍炫耀的說:“我的面積比你大,所以我的內角和也比你大!”

紅不服氣的說:“那可不好說噢,你自己量量看!”

藍用量角器量了量自己和紅,就不再說話了!

同學們,你們知道其中的道理嗎?

三角形三個內角的和等于180°

2、你有什么方法可以驗證呢?

方法一:度量法。

方法二:剪拼法。

3、你還有其他說明方法嗎?

二、探索規律,揭示新知

1、議一議:如,3根木條相交得∠1、∠2.若a∥b,則∠1+∠2=。

理由:。

2、操作:把木條a繞點A轉動,使它與木條b相交于點C.根據形,你能說明“三角形3個內角的和等于1800”的理由嗎?

3、說理:

(補充說明:也可以轉化為平角進行說明。)

4、方法小結:在這里,為了說明的需要,在原來的形上添畫的線叫做輔助線。在平面幾何里,輔助線通常畫成虛線。

5、你還有其他方法說明“三角形3個內角的和等于1800”嗎?

(1)

(2)

6、思路總結:為了說明三個角的和為1800,轉化為一個平角或同旁內角互補,這種轉化思想是數學中的常用思想方法。

三、嘗試反饋,領悟新知

例1:如,AC、BD相交于點O,∠A與∠B的和等于∠C與∠D的和嗎?為什么?

例2.如右,在△ABC中,∠A=3∠C,∠B=2∠C求三個內角的度數。

若將條件改為∠A:∠B:∠C=2:3:4,又如何解呢?

四、拓展延伸,運用新知

1、隨堂練習

2、結論:直角三角形的兩個銳角互余。

3、鞏固練習:

①、△ABC中,若∠A+∠B=∠C,則△ABC是()

A、銳角三角形B、直角三角形

C、鈍角三角形D、等腰三角形

②、在一個三角形的3個內角中,最多能有幾個直角?最多能有幾個鈍角呢?為什么?

③、如△ABC中,CD平分∠ACB,∠A=70度,∠B=50度,求∠BDC的度數。

五、課堂小結,內化新知

1本節課你有哪些收獲?

2你還有什么疑問?

六、布置作業,鞏固新知

1、必做題:

習題7.5第1、2、3、4題。

2、選做題。

如右:試求出中∠1+∠2+∠3的度數

七、教學寄語,拓寬課堂

老師寄語:

如果你想學會游泳,你必須下水;

如果你想成為解題能手,你必須解題。

初中數學教案范例大全篇10

教學目標

1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;

2.通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;

3.通過加法運算練習,培養學生的運算能力。

教學建議

(一)重點、難點分析

本節課的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略加號與括號的代數和的計算.

由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,這是因為有理數加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算.

(二)知識結構

(三)教法建議

1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.

2.關于“去括號法則”,只要學生了解,并不要求追究所以然.

3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如

-3-4表示-3、-4兩數的代數和,

-4+3表示-4、+3兩數的代數和,

3+4表示3和+4的代數和

等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。

4.先把正數與負數分別相加,可以使運算簡便。

5.在交換加數的位置時,要連同前面的符號一起交換。如

12-5+7應變成12+7-5,而不能變成12-7+5。

教學設計示例

有理數的加減混合運算(一)

一、素質教育目標

(一)知識教學點

1.了解:代數和的概念.

2.理解:有理數加減法可以互相轉化.

3.應用:會進行加減混合運算.

(二)能力訓練點

培養學生的口頭表達能力及計算的準確能力.

(三)德育滲透點

通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想.

(四)美育滲透點

學習了本節課就知道一切加減法運算都可以統一成加法運算.體現了數學的統一美.

二、學法引導

1.教學方法:采用嘗試指導法,體現學生主體地位,每一環節,設置一定題目進行鞏固練

習,步步為營,分散難點,解決關鍵問題.

2.學生寫法:練習→尋找簡單的一般性的方法→練習鞏固.

三、重點、難點、疑點及解決辦法

1.重點:把加減混合運算算式理解為加法算式.

2.難點:把省略括號和的形式直接按有理數加法進行計算.

四、課時安排

1課時

五、教具學具準備

投影儀或電腦、自制膠片.

六、師生互動活動設計

教師提出問題學生練習討論,總結歸納加減混合運算的一般步驟,教師出示練習題,學生練習反饋.

七、教學步驟

(一)創設情境,復習引入

師:前面我們學習了有理數的加法和減法,同學們學得都很好!請同學們看以下題目:-9+(+6);(-11)-7.

師:(1)讀出這兩個算式.

(2)“+、-”讀作什么?是哪種符號?

“+、-”又讀作什么?是什么符號?

學生活動:口答教師提出的問題.

師繼續提問:(1)這兩個題目運算結果是多少?

(2)(-11)-7這題你根據什么運算法則計算的?

學生活動:口答以上兩題(教師訂正).

師小結:減法往往通過轉化成加法后來運算.

【教法說明】為了進行有理數的加減混合運算,必須先對有理數加法,特別是有理數減法的題目進行復習,為進一步學習加減混合運算奠定基礎.這里特別指出“+、-”有時表示性質符號,有時是運算符號,為在混合運算時省略加號、括號時做必要的準備工作.

師:把兩個算式-9+(+6)與(-11)-7之間加上減號就成了一個題目,這個題目中既有加法又有減法,就是我們今天學習的有理數的加減混合運算.(板書課題2.7有理數的加減混合運算(1))

教學說明:由復習的題目巧妙地填“-”號,就變成了今天將學的加減混合運算內容,使學生更形象、更深刻地明白了有理數加減混合運算題目組成.

(二)探索新知,講授新課

1.講評(-9)+(-6)-(-11)-7.

(1)省略括號和的形式

師:看到這個題你想怎樣做?

學生活動:自己在練習本上計算.

教師針對學生所做的方法區別優劣.

【教法說明】題目出示后,教師不急于自己講評,而是讓學生嘗試,給了學生一個展示自己的機會,這時,有的學生可能是按從左到右的順序運算,有的同學可能是先把減法都轉化成了加法,然后按加法的計算法則再計算??這樣在不同的方法中,學生自己就會尋找到簡單的、一般性的方法.

師:我們對此類題目經常采用先把減法轉化為加法,這時就成了-9,+6,+11,-7的和,加號通常可以省略,括號也可以省略,即:

原式=(-9)+(+6)+(+11)+(-7)

=-9+6+11-7.

提出問題:雖然加號、括號省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以這個算式可以讀成??

學生活動:先自己練習嘗試用兩種讀法讀,口答(教師糾正).

【教法說明】教師根據學生所做的方法,及時指出最具代表性的方法來給學生指明方向,在把算式寫成省略括號代數和的形式后,通過讓學生練習兩種讀法,可以加深對此算式的理解,以此來訓練學生的觀察能力及口頭表達能力.

鞏固練習:(出示投影1)

1.把下列算式寫成省略括號和的形式,并把結果用兩種讀法讀出來.

(1)(+9)-(+10)+(-2)-(-8)+3;

(2)+()-()-().

2.判斷

式子-7+1-5-9的正確讀法是().

A.負7、正1、負5、負9;

B.減7、加1、減5、減9;

C.負7、加1、負5、減9;

D.負7、加1、減5、減9;

學生活動:1題兩個學生板演,兩個學生用兩種讀法讀出結果,其他同學自行演練,然后同桌讀出互相糾正,2題搶答.

【教法說明】這兩題旨意在鞏固怎樣把加減混合運算題目都轉化成加法運算寫成代數和的形式,這里特別注意了代數和形式的兩種讀法.

2.用加法運算律計算出結果

師:既然算式能看成幾個數的和,我們可以運用加法的運算律進行計算,通常同號兩數放在一起分別相加.

-9+6+11-7

=-9-7+6+11.

學生活動:按教師要求口答并讀出結果.

鞏固練習:(出示投影2)

填空:

1.-4+7-4=-______________-_______________+_______________

2.+6+9-15+3=_____________+_____________+_____________-_____________

3.-9-3+2-4=____________9____________3____________4____________2

4.____________________________________

學生活動:討論后回答.

【教法說明】學生運用加法交換律時,很可能產生“-9+7+11-6”這樣的錯誤,教師先讓學生自己去做,然后糾正,又做一組鞏固練習,使學生牢固掌握運用加法運算律把同號數放在一起時,一定要連同前面的符號一起交換這一知識點.

師:-9-7+6+11怎樣計算?

學生活動:口答

[板書]

-9-7+6+11

=-16+17

=1

鞏固練習:(出示投影3)

1.計算(1)-1+2-3-4+5;

(2).

2.做完前面兩個題目計算:(1)(+9)-(+10)+(-2)-(-8)+3;

(2).

學生活動:四個同學板演,其他同學在練習本上做.

【教法說明】針對一道例題分成三部分,每一部分都有一組相應的鞏固練習,這樣每一步學生都掌握得較牢固,這時教師一定要總結有理數加減混合運算的方法,使分散的知識有相對的集中.

師小結:有理數加減法混合運算的題目的步驟為:

1.減法轉化成加法;

2.省略加號括號;

3.運用加法交換律使同號兩數分別相加;

4.按有理數加法法則計算.

(三)反饋練習

(出示投影4)

計算:(1)12-(-18)+(-7)-15;

(2).

學生活動:可采用同桌互相測驗的方法,以達到糾正錯誤的目的.

【教法說明】這兩個題目是本節課的重點.采用測驗的方式來達到及時反饋.

(四)歸納小結

師:1.怎樣做加減混合運算題目?

2.省略括號和的形式的兩種讀法?

學生活動:口答.

【教法說明】小結不是教師單純的總結,而是讓學生參與回答,在學生思考回答的過程中將本節的重點知識納入知識系統.

八、隨堂練習

1.把下列各式寫成省略括號的和的形式

(1)(-5)+(+7)-(-3)-(+1);

(2)10+(-8)-(+18)-(-5)+(+6).

2.說出式子-3+5-6+1的兩種讀法.

3.計算

(1)0-10-(-8)+(-2);

(2)-4.5+1.8-6.5+3-4;

(3).

九、布置作業

(一)必做題:1.計算:(1)-8+12-16-23;

(2);

(3)-40-28-(-19)+(-24)-(-32);

(4)-2.7+(-3.2)-(1.8)-2.2;

(二)選做題:(1)當時,,,哪個最大,哪個最小?

(2)當時,,,哪個最大,哪個最小?

十、板書設計

初中數學教案范例大全篇11

教學目的

1. 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。

2. 熟識等邊三角形的性質及判定.

2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。

教學重點: 等腰三角形的性質及其應用。

教學難點: 簡潔的邏輯推理。

教學過程

一、復習鞏固

1.敘述等腰三角形的性質,它是怎么得到的?

等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以∠B=∠C。

等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。

2.若等腰三角形的兩邊長為3和4,則其周長為多少?

二、新課

在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

等邊三角形具有什么性質呢?

1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。

2.你能否用已知的知識,通過推理得到你的猜想是正確的?

等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。

3.上面的條件和結論如何敘述?

等邊三角形的各角都相等,并且每一個角都等于60°。

等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

等邊三角形也稱為正三角形。

例1.在△ABC中,AB=AC,D是BC邊上的中點,∠B=30°,求∠1和∠ADC的度數。

分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?

問題2:求∠1是否還有其它方法?

三、練習鞏固

1.判斷下列命題,對的打“√”,錯的打“×”。

a.等腰三角形的角平分線,中線和高互相重合( )

b.有一個角是60°的等腰三角形,其它兩個內角也為60°( )

2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數。

3.P54練習1、2。

四、小結

由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。

五、作業: 1.課本P57第7,9題。

2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數。

12.3.2 等邊三角形(二)

教學目標

1.掌握等邊三角形的性質和判定方法. 2.培養分析問題、解決問題的能力.

教學重點:等邊三角形的性質和判定方法.

教學難點:等邊三角形性質的應用

教學過程

I創設情境,提出問題

回顧上節課講過的等邊三角形的有關知識

1.等邊三角形是軸對稱圖形,它有三條對稱軸.

2.等邊三角形每一個角相等,都等于60°

3.三個角都相等的三角形是等邊三角形.

4.有一個角是60°的等腰三角形是等邊三角形.

其中1、2是等邊三角形的性質;3、4的等邊三角形的判斷方法.

II例題與練習

1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

①在邊AB、AC上分別截取AD=AE.

②作∠ADE=60°,D、E分別在邊AB、AC上.

③過邊AB上D點作DE∥BC,交邊AC于E點.

2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質即可推得∠PAB=30°.

3. P56頁練習1、2

III課堂小結:1.等腰三角形和性質;等腰三角形的條件

V布置作業: 1.P58頁習題12.3第ll題.

2.已知等邊△ABC,求平面內一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?

12.3.2 等邊三角形(三)

教學過程

一、 復習等腰三角形的判定與性質

二、 新授:

1.等邊三角形的性質:三邊相等;三角都是60°;三邊上的中線、高、角平分線相等

2.等邊三角形的判定:

三個角都相等的三角形是等邊三角形;有一個角是60°的等腰三角形是等邊三角形;

在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半

注意:推論1是判定一個三角形為等邊三角形的一個重要方法.推論2說明在等腰三角形中,只要有一個角是600,不論這個角是頂角還是底角,就可以判定這個三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關系.

3.由學生解答課本148頁的例子;

4.補充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,

∠ABC=120o, 求證: AB=2BC

分析 由已知條件可得∠ABD=30o, 如能構造有一個銳角是30o的直角三角形, 斜邊是AB,30o角所對的邊是與BC相等的線段,問題就得到解決了.

初中數學教案范例大全篇12

【教材分析】

一元二次方程是中學數學的主要內容之一,在初中數學中占有重要地位。通過一元二次方程的學習,可以對已學過實數、一元一次方程、因式分解、二次根式等知識加以鞏固,同時又是今后學習可化為一元二次方程的其它高元方程、一元二次不等式、二次函數等知識的基礎。此外,學習一元二次方程對其它學科有重要意義。本節課是一元二次方程的概念,是通過豐富的實例,讓學生建立一元二次方程,并通過觀察歸納出一元二次方程的概念。

【教學目標】

1、理解一元二次方程的概念,能熟練地把一元二次方程整理成一般形式(≠0)并知道各項及其系數。

2、在分析、揭示實際問題的數量關系并把實際問題轉化為數學模型(一元二次方程)的過程中使學生感受方程是刻畫現實世界數量關系的工具,增加對一元二次方程的進一步認識。

【教學重點與難點】

理解一元二次方程的概念及一般形式,會正確識別一般式中的“項”及“系數”。

【教法、學法】

因為學生已經學習了一元一次方程及相關概念,所以本節課我主要采用啟發式、類比法教學。教學中力求體現“問題情景---數學模型-----概念歸納”的模式。本節課借助多媒體輔助教學,指導學生從具體的問題情景中抽象出數學問題,建立數學方程,從而突破難點。同時學生在現實的生活情景中,經歷數學建模,經過自主探索和合作交流的學習過程,產生積極的情感體驗,進而創造性地解決問題,有效發揮學生的思維能力。

【教學過程】

一、復習舊知,類比新知

1、一元一次方程的概念

像這樣的等號兩邊都是整式,只含有一個未知數(一元),并且未知數的次數是1(一次)的方程叫做一元一次方程

2、一般形式:

是常數且

設計意圖:復習一元一次方程,讓學生回憶起一元一次方程的概念,回憶起“項”及“系數”的概念,通過類比,讓學生能更好的理解一元二次方程的概念。

二、生活情境,自主學習

(1)正方形桌面的面積是2m,設正方形桌面的邊長是xm,可得方程

(2)矩形花圃一面靠墻,另外三面所圍的柵欄的總長度是19米。如果花圃的面積是24m2,設花圃的寬是xm則花圃的長是m,可得方程

(3)一張面積是600cm2的長方形紙片,把它的一邊剪短10cm,恰好得到一個正方形。設這個正方形的邊長是xcm,可得方程

(4)長5米的梯子斜靠在墻上,梯子的底端與墻的距離比梯子的頂端到地面的距離多1m,設梯子的底端到墻面的距離是xm,可得方程

設計意圖:因為數學來源與生活,所以以學生的實際生活背景為素材創設情景,易于被學生接受、感知。讓學生從實際問題中提煉出數學問題,初步培養學生的空間概念和抽象能力。情景分析中學生自然會想到用方程來解決問題,但所列的方程不是以前學過的`,從而激發學生的求知欲望,順利地進入新課。

三、探究學習:

1、概念得出

討論交流:以上所列方程有哪些共同特征?

設計意圖:英國一位著名的數學教育心理學家曾說:概念的教學要從大量實例出發,通過實例幫助完成定義,而不是教定義。讓學生充分感受所列方程的特點,再通過類比的方法得到定義,從而達到真正理解定義的目的.

2、鞏固概念

下列方程中那些是一元二次方程。

設計意圖:

這組練習目的在于鞏固學生對一元二次方程定義中3個特征的理解.題目的設置,目的在于進一步加深學生對定義的掌握,提高學生對變式的理解能力.此環節采取搶答的形式,提高學生學習數學的興趣和積極性.

3、一元二次方程的一般形式:

設計意圖:此環節讓學生通過自主探究,類比一元一次方程一般形式,得出一元二次方程一般形式和項,系數的概念,從而達到真正理解并掌握的目的.

4.典型例題

例將下列方程化為一元二次方程的一般形式,并分別指出它們的二次項系數、一次項系數和常數項

設計意圖:此題設置的目的在于加深學生對一般形式的理解。

5.鞏固練習

把下列方程化成一元二次方程的一般形式,并寫出它的二次項系數、一次項系數和常數項

設計意圖:此題設置的目的在于加深學生對一般形式的理解

6、拓展應用

(1)、若是關于x的一元二次方程,則()

p為任意實數B、p=0C、p≠0D、p=0或1

(2)、若關于x的方程mx-2x+1=2x(x-1)是一元二次方程,那么m的取值范圍是

(3)、若方程是關于x的一元二次方程,則m的值為

設計意圖:此題讓學生進行思考,討論,讓學生進行講解,教師作適當歸納,可留疑,讓學生課下思考。此題需進行分類討論,開拓學生思維,體現數學的嚴謹性。

7.課堂小結

設計意圖:小結反思中,不同學生有不同的體會,要尊重學生的個體差異,激發學生主動參與意識,.為每個學生都創造了數學活動中獲得活動經驗的機會。

【課后作業】

1、下列方程中哪些是一元二次方程?試說明理由。

2、將下列方程化為一般形式,并分別指出它們的二次項系數、一次項系數和常數項:

初中數學教案范例大全篇13

學習目標:

1、使學生會用列一元二次方程的方法解決有關增長率的應用題;

2、進一步培養學生分析問題、解決問題的能力。

學習重點:

會列一元二次方程解關于增長率問題的應用題。

學習難點:

如何分析題意,找出等量關系,列方程。

學習過程:

一、復習提問:

列一元二次方程解應用題的一般步驟是什么?

二、探索新知

1.情境導入

問題:“坡耕地退耕還林還草”是國家為了解決西部地區水土流失生態問題、幫助廣大農民脫貧致富的一項戰略措施,某村村長為帶領全村群眾自覺投入“坡耕地退耕還林還草”行動,率先示范.2002年將自家的坡耕地全部退耕,并于當年承包了30畝耕地的還林還草及管理任務,而實際完成的畝數比承包數增加的百分率為x,并保持這一增長率不變,2003年村長完成了36.3畝坡耕地還林還草任務,求①增長率x是多少?②該村有50戶人家,每戶均地村長2003年完成的畝數為準,國家按每畝耕地500斤糧食給予補助,則國家將對該村投入補助糧食多少萬斤?

2.合作探究、師生互動

教師引導學生分析關于環保的情境導入問題,這是一個平均增長率問題,它的基數是30畝,平均增長的百分率為x,那么第一次增長后,即2002年實際完成的畝數是30(1+x),第二次增長后,即2003年實際完成的畝數是30(1+x)2,而這一年村長完成的畝數正好是36.3畝.

教師引導學生運用方程解決問題:

①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增長的百分率為10%.

②全村坡耕地還林還草為50×36.3=1815(畝),國家將補助糧食1815×500=907500(斤)=90.75(萬斤).

三、例題學習

說明:題目中求平均每月增長的百分率,直接設增長的百分率為x,好處在于計算簡便且直接得出所求。

例、某產品原來每件是600元,由于連續兩次降價,現價為384元,如果兩降價的百分率相同,求每次降價百分之幾?

(小組合作交流教師點撥)

時間基數降價降價后價錢

第一次600600x600(1-x)

第二次600(1-x)600(1-x)x600(1-x)2

(由學生寫出解答過程)

四、鞏固練習

一商店1月份的利潤是2500元,3月份的利潤達到3000元,這兩個月的利潤平均增長的百分率是多少(精確到0.1%)?

五、課堂總結:

1、善于將實際問題轉化為數學問題,嚴格審題,弄清各數據間相互關系,正確列出方程。

2、注意解方程中的巧算和方程兩個根的取舍問題。

六、反饋練習:

1.某商品計劃經過兩個月的時間將售價提高20%,設每月平均增長率為x,則列出的方程為()

A.x+(1+x)x=20%B.(1+x)2=20%

C.(1+x)2=1.2D.(1+x%)2=1+20%

2.某工廠計劃兩年內降低成本36%,則平均每年降低成本的百分率是()

3.某種藥劑原售價為4元,經過兩次降價,現在每瓶售價為2.56元,問平均每次降低百分之幾?

初中數學教案范例大全篇14

1、三角形的定義:由三條線段圍成的圖形(每相鄰兩條線段的端點相連或重合),叫三角形。

2、從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足間的線段叫做三角形的高,這條對邊叫做三角形的底。三角形只有3條高。重點:三角形高的畫法。

3、三角形的特性:1、物理特性:穩定性。如:自行車的三角架,電線桿上的三角架。

4、邊的特性:任意兩邊之和大于第三邊。

5、為了表達方便,用字母A、B、C分別表示三角形的三個頂點,三角形可表示成三角形ABC。

6、三角形的分類:

按照角大小來分:銳角三角形,直角三角形,鈍角三角形。

按照邊長短來分:三邊不等的△,等腰△(等邊三角形或正三角形是特殊的等腰△)。

等邊△的三邊相等,每個角是60度。(頂角、底角、腰、底的概念)

7、三個角都是銳角的三角形叫做銳角三角形。

8、有一個角是直角的三角形叫做直角三角形。

9、有一個角是鈍角的三角形叫做鈍角三角形。

10、每個三角形都至少有兩個銳角;每個三角形都至多有1個直角;每個三角形都至多有1個鈍角。

11、兩條邊相等的三角形叫做等腰三角形。

12、三條邊都相等的三角形叫等邊三角形,也叫正三角形。

13、等邊三角形是特殊的等腰三角形

14、三角形的內角和等于180度。四邊形的內角和是360°有關度數的計算以及格式。

15、圖形的拼組:兩個完全一樣的三角形一定能拼成一個平行四邊形。

16、用2個相同的三角形可以拼成一個平行四邊形。

17、用2個相同的直角三角形可以拼成一個平行四邊形、一個長方形、一個大三角形。

18、用2個相同的等腰的直角的三角形可以拼成一個平行四邊形、一個正方形。一個大的等腰的直角的三角形。

19、密鋪:可以進行密鋪的圖形有長方形、正方形、三角形以及正六邊形等。

初中數學教案范例大全篇15

教學目標

1、知識與技能:體會公式的發現和推導過程,了解公式的幾何背景,理解公式的本質,會應用公式進行簡單的計算.

2、過程與方法:通過讓學生經歷探索完全平方公式的過程,培養學生觀察、發現、歸納、概括、猜想等探究創新能力,發展推理能力和有條理的表達能力.培養學生的數形結合能力.

3、情感態度價值觀:體驗數學活動充滿著探索性和創造性,并在數學活動中獲得成功的體驗與喜悅,樹立學習自信心.

教學重難點

教學重點:

1、對公式的理解,包括它的推導過程、結構特點、語言表述(學生自己的語言)、幾何解釋.

2、會運用公式進行簡單的計算.

教學難點:

1、完全平方公式的推導及其幾何解釋.

2、完全平方公式的結構特點及其應用.

教學工具

課件

教學過程

一、復習舊知、引入新知

問題1:請說出平方差公式,說說它的結構特點.

問題2:平方差公式是如何推導出來的?

問題3:平方差公式可用來解決什么問題,舉例說明.

問題4:想一想、做一做,說出下列各式的結果.

(1)(a+b)2(2)(a-b)2

(此時,教師可讓學生分別說說理由,并且不直接給出正確評價,還要繼續激發學生的學習興趣.)

二、創設問題情境、探究新知

一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(如圖)

(1)四塊面積分別為:、、、;

(2)兩種形式表示實驗田的總面積:

①整體看:邊長為的大正方形,S=;

②部分看:四塊面積的和,S=.

總結:通過以上探索你發現了什么?

問題1:通過以上探索學習,同學們應該知道我們提出的問題4正確的結果是什么了吧?

問題2:如果還有同學不認同這個結果,我們再看下面的問題,繼續探索.(a+b)2表示的意義是什么?請你用多項式的乘法法則加以驗證.

(教學過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗證才能得出真知,但還是要鼓勵學生大膽猜想,發表見解,但要驗證)

問題3:你能說說(a+b)2=a2+2ab+b2

這個等式的結構特點嗎?用自己的語言敘述.

(結構特點:右邊是二項式(兩數和)的平方,右邊有三項,是兩數的平方和加上這兩數乘積的二倍)

問題4:你能根據以上等式的結構特點說出(a-b)2等于什么嗎?請你再用多項式的乘法法則加以驗證.

總結:我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.

問題:①這兩個公式有何相同點與不同點?②你能用自己的語言敘述這兩個公式嗎?

語言描述:兩數和(或差)的平方等于這兩數的平方和加上(或減去)這兩數積的2倍.

強化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.

三、例題講解,鞏固新知

例1:利用完全平方公式計算

(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

解:(2x-3)2=(2x)2-2o(2x)o3+32

=4x2-12x+9

(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

=16x2+40xy+25y2

(mn-a)2=(mn)2-2o(mn)oa+a2

=m2n2-2mna+a2

交流總結:運用完全平方公式計算的一般步驟

(1)確定首、尾,分別平方;

(2)確定中間系數與符號,得到結果.

四、練習鞏固

練習1:利用完全平方公式計算

練習2:利用完全平方公式計算

練習3:

(練習可采用多種形式,學生上黑板板演,師生共同評價.也可學生獨立完成后,學生互相批改,力求使學生對公式完全掌握,如有學生出現問題,學生、教師應及時幫助.)

五、變式練習

六、暢談收獲,歸納總結

1、本節課我們學習了乘法的完全平方公式.

2、我們在運用公式時,要注意以下幾點:

(1)公式中的字母a、b可以是任意代數式;

(2)公式的結果有三項,不要漏項和寫錯符號;

(3)可能出現①②這樣的錯誤.也不要與平方差公式混在一起.

七、作業設置

518882 主站蜘蛛池模板: 昆山新莱洁净应用材料股份有限公司-卫生级蝶阀,无菌取样阀,不锈钢隔膜阀,换向阀,离心泵 | 氧氮氢联合测定仪-联测仪-氧氮氢元素分析仪-江苏品彦光电 | TPE塑胶原料-PPA|杜邦pom工程塑料、PPSU|PCTG材料、PC/PBT价格-悦诚塑胶 | RTO换向阀_VOC高温阀门_加热炉切断阀_双偏心软密封蝶阀_煤气蝶阀_提升阀-湖北霍科德阀门有限公司 | 金属抛光机-磁悬浮抛光机-磁力研磨机-磁力清洗机 - 苏州冠古科技 | 硬齿面减速机_厂家-山东安吉富传动设备股份有限公司 | 变位机,焊接变位机,焊接变位器,小型变位机,小型焊接变位机-济南上弘机电设备有限公司 | 聚丙烯酰胺PAM-聚合氯化铝PAC-絮凝剂-河南博旭环保科技有限公司 巨野电机维修-水泵维修-巨野县飞宇机电维修有限公司 | 陕西安玻璃自动感应门-自动重叠门-磁悬浮平开门厂家【捷申达门业】 | 扫地车厂家-山西洗地机-太原电动扫地车「大同朔州吕梁晋中忻州长治晋城洗地机」山西锦力环保科技有限公司 | 接地电阻测试仪[厂家直销]_电缆故障测试仪[精准定位]_耐压测试仪-武汉南电至诚电力设备 | 胜为光纤光缆_光纤跳线_单模尾纤_光纤收发器_ODF光纤配线架厂家直销_北京睿创胜为科技有限公司 - 北京睿创胜为科技有限公司 | 超声波清洗机_细胞破碎仪_实验室超声仪器_恒温水浴-广东洁盟深那仪器 | 档案密集架_电动密集架_移动密集架_辽宁档案密集架-盛隆柜业厂家现货批发销售价格公道 | 合景一建-无尘车间设计施工_食品医药洁净车间工程装修总承包公司 | 户外环保不锈钢垃圾桶_标识标牌制作_园林公园椅厂家_花箱定制-北京汇众环艺 | 智慧养老_居家养老_社区养老_杰佳通| 100国际学校招生 - 专业国际学校择校升学规划| 电池挤压试验机-自行车喷淋-车辆碾压试验装置-深圳德迈盛测控设备有限公司 | 知名电动蝶阀,电动球阀,气动蝶阀,气动球阀生产厂家|价格透明-【固菲阀门官网】 | 精密交叉滚子轴承厂家,转盘轴承,YRT转台轴承-洛阳千协轴承 | 钣金加工厂家-钣金加工-佛山钣金厂-月汇好 | 生产自动包装秤_颗粒包装秤_肥料包装秤等包装机械-郑州鑫晟重工科技有限公司 | 网站制作优化_网站SEO推广解决方案-无锡首宸信息科技公司 | 冰晶石|碱性嫩黄闪蒸干燥机-有机垃圾烘干设备-草酸钙盘式干燥机-常州市宝康干燥 | 冷库安装厂家_杭州冷库_保鲜库建设-浙江克冷制冷设备有限公司 | 5nd音乐网|最新流行歌曲|MP3歌曲免费下载|好听的歌|音乐下载 免费听mp3音乐 | 济南电缆桥架|山东桥架-济南航丰实业有限公司 | 半容积式换热器_北京浮动盘管换热器厂家|北京亿丰上达 | 宏源科技-房地产售楼系统|线上开盘系统|售楼管理系统|线上开盘软件 | 制丸机,小型中药制丸机,全自动制丸机价格-甘肃恒跃制药设备有限公司 | 煤矿支护网片_矿用勾花菱形网_缝管式_管缝式锚杆-邯郸市永年区志涛工矿配件有限公司 | 光伏支架成型设备-光伏钢边框设备-光伏设备厂家 | 薄壁轴承-等截面薄壁轴承生产厂家-洛阳薄壁精密轴承有限公司 | 新疆十佳旅行社_新疆旅游报价_新疆自驾跟团游-新疆中西部国际旅行社 | POS机办理_个人POS机免费领取 - 银联POS机申请首页 | 天津云仓-天津仓储物流-天津云仓一件代发-顺东云仓 | 郑州水质检测中心_井水检测_河南废气检测_河南中环嘉创检测 | 广州网站建设_小程序开发_番禺网站建设_佛山网站建设_粤联网络 | 【ph计】|在线ph计|工业ph计|ph计厂家|ph计价格|酸度计生产厂家_武汉吉尔德科技有限公司 | 篮球地板厂家_舞台木地板品牌_体育运动地板厂家_凯洁地板 |